四角连接钢板剪力墙力学性能研究
本文关键词:四角连接钢板剪力墙力学性能研究 出处:《哈尔滨工业大学》2014年硕士论文 论文类型:学位论文
【摘要】:本文提出了一种四角连接钢板剪力墙,这种钢板剪力墙具有加劲和非加劲两种形式,本文对这两种形式运用有限元模拟和理论推导方法进行了系统的力学性能研究。主要研究内容和成果如下: 四角连接非加劲钢板剪力墙弹性屈曲分析。通过有限元软件进行参数化分析,发现剪力墙发生对角大波屈曲,影响剪力墙屈曲系数和屈曲模态的因素仅为墙板边长比α,并且运用拟合和理论推导方法给出了剪力墙弹性屈曲系数的计算公式。 四角连接非加劲钢板剪力墙弹塑性屈曲分析。通过有限元软件对剪力墙进行侧向受力全过程分析,研究其受力机制,并对其面外变形进行了探讨。通过理论推导,建立了极限承载力计算公式、边缘框架柱的最小刚度需求公式,并用数值模拟对极限承载力计算公式进行了验证。对比了相同用钢量下四角连接和四边连接非加劲钢板剪力墙,发现四角连接非加劲钢板剪力墙的极限承载力和初始刚度都高于四边连接钢板剪力墙,四角连接的形式具有更高的工作效率,同时四角连接钢板剪力墙构造简单,减少的焊接(或栓接)的工作量。 四角连接加劲钢板剪力墙弹性屈曲分析。通过有限元进行参数化分析,发现在参数研究范围内剪力墙发生小区格内的小波屈曲,影响四角连接加劲与非加劲钢板剪力墙屈曲系数之比k/k0的因素为墙板高厚比λ、加劲肋与墙板刚度比s和加劲肋宽厚比s,墙板边长比α对k/k0基本没有影响。并运用拟合和理论推导的方法给出了四角连接加劲钢板剪力墙弹性屈曲系数的计算方法。 四角连接加劲钢板剪力墙弹塑性屈曲分析。通过有限元软件对剪力墙进行侧向受力全过程分析,揭示其受力机制和特点,并对其面外变形进行了探讨。通过理论推导,建立了极限承载力计算公式、边缘框架柱的最小刚度需求公式,并用数值模拟对极限承载力计算公式进行了验证。对比了相同高厚比下的四角连接加劲与非加劲钢板剪力墙,,发现加劲肋可以提高剪力墙承载力和刚度,具有更高的工作效率,同时了减小面外位移。
[Abstract]:In this paper, a four-angle steel plate shear wall is proposed, which has two forms: stiffening and non-stiffening. In this paper, the mechanical properties of these two forms are studied by finite element simulation and theoretical derivation. The main contents and results are as follows: The elastic buckling analysis of non-stiffened steel plate shear wall with four angles is carried out. Through the parametric analysis of finite element software, it is found that the diagonal large wave buckling occurs in the shear wall. The factor that affects the buckling coefficient and the buckling mode of shear wall is only the side length ratio 伪. The formula for calculating the elastic buckling coefficient of shear wall is given by the method of fitting and theoretical derivation. The elastoplastic buckling analysis of non-stiffened steel plate shear wall with four angles is carried out. The whole lateral force process of shear wall is analyzed by finite element software, and the mechanism of the shear wall is studied. Through theoretical derivation, the calculation formula of ultimate bearing capacity and the minimum stiffness requirement formula of edge frame column are established. The calculation formula of ultimate bearing capacity is verified by numerical simulation, and the non-stiffened steel plate shear wall with four angles and four sides is compared under the same amount of steel. It is found that the ultimate bearing capacity and initial stiffness of non-stiffened steel plate shear wall with four angles are higher than those of steel plate shear wall with four angles, and the form of four angle connection has higher working efficiency. At the same time, the four-angle connection steel shear wall structure is simple, reducing the welding (or bolt) of the workload. Elastic buckling analysis of steel plate shear wall with four-angle connection. Through the parametric analysis of finite element, it is found that the wavelet buckling of shear wall occurs in the area of parameter study. The factors influencing the ratio of buckling coefficient of stiffened and non-stiffened steel plate shear walls k / k0 are the ratio of wall height to thickness 位, the stiffness ratio of stiffened ribbed ribs to wall panels and the ratio of stiffened ribbed ribs to the width and thickness of stiffeners. The ratio of wall side length 伪 has no effect on k / k _ 0, and the calculation method of elastic buckling coefficient of steel plate shear wall with four-angle connection is given by the method of fitting and theoretical derivation. The elastoplastic buckling analysis of steel plate shear wall with four angles is carried out. The whole process of lateral force on shear wall is analyzed by finite element software to reveal the mechanism and characteristics of the shear wall. Through theoretical derivation, the calculation formula of ultimate bearing capacity and the minimum stiffness requirement formula of edge frame column are established. The calculation formula of ultimate bearing capacity is verified by numerical simulation. By comparing the stiffened and non-stiffened steel plate shear walls with the same ratio of height and thickness, it is found that stiffening ribs can improve the bearing capacity and stiffness of shear walls. It has higher working efficiency and reduces out-of-plane displacement.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU391
【相似文献】
相关期刊论文 前10条
1 郭彦林;周明;;非加劲与防屈曲钢板剪力墙性能及设计理论的研究现状[J];建筑结构学报;2011年01期
2 郭彦林;周明;董全利;王小安;;三类钢板剪力墙结构试验研究[J];建筑结构学报;2011年01期
3 蒋路;;带缝钢板剪力墙应用技术分析[J];建筑科学与工程学报;2012年02期
4 宁子健;郝际平;于金光;钟炜辉;白睿;;无粘结十字加劲钢板剪力墙结构抗剪性能分析[J];钢结构;2013年07期
5 ;钢板剪力墙[J];钢结构;1997年02期
6 陈国栋,郭彦林;十字加劲钢板剪力墙的抗剪极限承载力[J];建筑结构学报;2004年01期
7 万红霞,谢伟平,王小平;考虑屈曲后强度的钢板剪力墙极限剪力计算[J];钢结构;2004年03期
8 郭彦林,董全利;钢板剪力墙的发展与研究现状[J];钢结构;2005年01期
9 王迎春;郝际平;李峰;孙彤;;钢板剪力墙力学性能研究[J];西安建筑科技大学学报(自然科学版);2007年02期
10 曹志亮;;带缝钢板剪力墙弹性稳定性分析[J];钢结构;2007年03期
相关会议论文 前10条
1 段清星;邹自明;曾清华;何欢欢;赵伟;;钢板剪力墙研究现状和工程应用[A];钢结构工程研究(九)——中国钢结构协会结构稳定与疲劳分会第13届(ISSF-2012)学术交流会暨教学研讨会论文集[C];2012年
2 朱俊;陆道渊;黄良;徐麟;;天津津塔结构钢板剪力墙力学性能分析[A];建筑结构(2009·增刊)——第二届全国建筑结构技术交流会论文集[C];2009年
3 王伟栋;蒋路;;带缝钢板剪力墙强度与稳定相关关系及调节措施研究[A];'2009全国钢结构学术年会论文集[C];2009年
4 孙飞飞;王文涛;刘桂然;;开缝钢板剪力墙的理论分析与数值模拟[A];第七届全国现代结构工程学术研讨会论文集[C];2007年
5 高辉;孙飞飞;李国强;;组合钢板剪力墙简化计算模型[A];第七届全国现代结构工程学术研讨会论文集[C];2007年
6 孙飞飞;刘桂然;王文涛;;钢框架钢板剪力墙结构的非线性静力分析[A];第七届全国现代结构工程学术研讨会论文集[C];2007年
7 孙学水;赵伟;高长喜;尹卫泽;张卫东;关超;;横向加劲钢板剪力墙试验和有限元研究[A];第四届全国钢结构工程技术交流会论文集[C];2012年
8 何欢欢;赵剑丽;赵伟;;稀疏竖向加劲钢板剪力墙试验研究[A];钢结构工程研究(九)——中国钢结构协会结构稳定与疲劳分会第13届(ISSF-2012)学术交流会暨教学研讨会论文集[C];2012年
9 蔡克挀;朱
本文编号:1413881
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/1413881.html