基于BIM协同设计建筑热工性能优化设计过程的经济性分析
发布时间:2018-03-08 09:02
本文选题:建筑热工性能优化 切入点:协同设计 出处:《大连理工大学》2014年硕士论文 论文类型:学位论文
【摘要】:传统的建筑设计产物不单是在施工阶段需要消耗数量巨大的不可再生能源,而且在建成之后同样需要消耗大量的能源,并且严重的污染和破坏环境。通过建筑热工性能优化可以最大限度的降低能源消耗和提高建筑物整体性能,并且满足人们对室内舒适性的要求。热工性能优化伴随着初投资以及运行费用的变化,如何客观地分析优化方案的经济性在能源紧缺的今天尤为重要。本文构建了基于全生命周期成本控制的BIM协同设计平台,以费用年值法和动态追加投资回收期作为经济性评价指标分析基于所构建的BIM协同设计平台完成建筑热工性能优化方案的经济性。本文通过文献查阅、理论分析、和工程案例研究重点分析下问题: 首先,针对现有的建筑早期设计过程中热工设计优化缺乏全面客观的经济性分析、过分注重初投资等问题,对建筑全生命周期成本、初投资和运行费用三者之间的关系进行了阐述分析,并研究了建筑热工性能优化方案的经济性分析方法。确定了以全生命周期费用年值和动态追加投资回收期作为评价指标的经济性分析方法。 其次,构建基于全生命周期成本控制的BIM协同设计平台,组建以建筑师、暖通工程师、造价师等多专业协同工作的建筑热工优化设计平台。建筑师通过BIM协同设计平台完成方案的建筑信息模型构建,暖通工程师和造价工程师分别对建筑师完成的建筑设计方案的信息模型进行性能分析和成本分析,再把相关的分析结果及建议通过协同设计平台反馈给建筑师来协助建筑师完成方案的优化。 再次,通过呼和浩特市某五层住宅案例基于全生命周期成本的建筑热工性能优化决策流程的分析,从全生生命周期成本最低的角度,确定外墙热阻提高89.2%、外窗热阻提高46.5%的热工性能优化方案可以在满足节能65%的原方案基础上再节能28.72%,追加投资为58.01元/m2,年度节能收益为14.34元/m2,二氧化碳年排放减少20.66kg/m2,即使考虑到资金的时间价值也只需要不到5年的时间就可以收回追加投资。 最后,本研究在前文提出的基于全生命周期成本控制的BIM协同设计平台中完成了两个实际工程案例的建筑热工性能优化经济性分析决策方法的应用。通过案例分析发现在满足当前节能65%的标准(北京市居住建筑节能75%标准)的设计方案中,对方案进行建筑热工性能优化,然后运用全生命周期总成本和追加投资回收期等经济性分析手段确定优化方案,可以实现在原节能设计标准的基础上再节能10%-30%,并且追加的初投资可以在很短的时间通过节能收益来收回。
[Abstract]:Traditional architectural design products not only consume a large amount of non-renewable energy in the construction phase, but also consume a large amount of energy after completion. And serious pollution and damage to the environment. Through building thermal performance optimization can minimize energy consumption and improve the overall performance of the building, The optimization of thermal performance is accompanied by the change of initial investment and operation cost. How to objectively analyze the economy of optimization scheme is particularly important in today's energy shortage. In this paper, a BIM collaborative design platform based on life-cycle cost control is constructed. Based on the annual cost method and the dynamic additional investment payback period as the economic evaluation index, this paper analyzes the economy of the thermal performance optimization scheme of building based on the BIM collaborative design platform. And engineering case studies focus on the following issues:. First of all, in view of the lack of comprehensive and objective economic analysis of thermal design optimization in the early design process of existing buildings, excessive attention is paid to the initial investment and so on. The relationship between initial investment and operation cost is analyzed. The economic analysis method of the optimization scheme of building thermal performance is studied, and the economic analysis method based on the annual value of the whole life cycle cost and the dynamic additional investment payback period is determined. Secondly, the BIM collaborative design platform based on the whole life cycle cost control is constructed, which is composed of architects, HVAC engineers, The building thermal optimization design platform with multi-professional and collaborative work, such as cost engineer, is used by the architect to complete the building information model construction of the project through the BIM collaborative design platform. HVAC engineers and cost engineers analyze the performance and cost of information models of architectural design schemes completed by architects, respectively. Then the related analysis results and suggestions are fed back to the architect through the collaborative design platform to assist the architect to complete the optimization of the project. Thirdly, through the analysis of the decision-making process of building thermal performance optimization based on the whole life cycle cost of a five-story residence in Hohhot City, from the perspective of the lowest cost of the whole life cycle, It is determined that the thermal performance optimization scheme of increasing the thermal resistance of external wall by 89.2and the thermal resistance of outer window by 46.5% can save 28.72 energy on the basis of the original scheme of energy saving 65%, the additional investment is 58.01 yuan / m2, the annual energy saving income is 14.34 yuan / m ~ 2, and the annual carbon dioxide emission is reduced. Less than 20.66 kg / m2, even considering the time value of the capital, takes less than five years to recoup additional investment. Finally, In the BIM collaborative design platform based on the whole life cycle cost control proposed earlier, the application of the economic analysis and decision method of building thermal performance optimization in two practical engineering cases has been completed in this study. The case study shows that the method can be applied to the economic analysis of thermal performance optimization of buildings. In the design scheme of meeting the current energy saving 65% standard (Beijing residential building energy saving 75% standard), The thermal performance of the project is optimized, and the optimization scheme is determined by the economic analysis means such as the total cost of the whole life cycle and the payback period of the additional investment. Energy saving can be realized on the basis of the original energy saving design standard 10-30 and the additional initial investment can be recovered in a very short time through the energy saving income.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU111.4;TU17
【参考文献】
相关期刊论文 前10条
1 宋晓新;鞠硕华;王随林;;北方既有居住围护结构节能潜力分析[J];低温建筑技术;2008年05期
2 董海广;许淑惠;;北京地区窗墙比和遮阳对住宅建筑能耗的影响[J];建筑节能;2010年09期
3 王厚华;吴伟伟;;居住建筑外墙外保温厚度的优化分析[J];重庆大学学报;2008年08期
4 ;2003~2008年全国建筑业信息化发展规划纲要[J];智能建筑与城市信息;2004年01期
5 肖良丽;吴子昊;方婉蓉;王小涛;;BIM理念在建筑绿色节能中的研究和应用[J];工程建设与设计;2013年03期
6 焦庆丰;朱光明;李明;黄丕维;段学农;;我国火电厂能耗现状及节能潜力分析[J];湖南电力;2008年01期
7 郁文红,杨昭;采暖居住建筑节能改造收益分析[J];节能;2004年12期
8 刘学来,李永安;居住建筑外墙外保温作法及经济分析[J];建筑技术;2005年10期
9 过俊;陈宇;赵斌;;BIM在建筑全生命周期中的应用[J];建筑技艺;2010年Z1期
10 过俊;;BIM在国内建筑全生命周期的典型应用[J];建筑技艺;2011年Z1期
相关博士学位论文 前1条
1 于靖华;基于EETP指标的夏热冬冷地区居住建筑围护结构热工性能及经济性研究[D];湖南大学;2009年
,本文编号:1583234
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/1583234.html