基于粒子群—模拟退火的群控电梯远程监控系统
本文选题:群控电梯 + 粒子群-模拟退火算法 ; 参考:《辽宁工程技术大学》2014年硕士论文
【摘要】:伴随着科学技术的极迅发展以及社会经济的迅猛进步,高层建筑业已初步成为摩登城市的重要象征,作为垂直交通工具的电梯,担负着大量人流及物流的运输重任,因此,需要加大对电梯的研究工作。针对高层建筑电梯多、分布散、维修不及时等问题,提出了一个优化调度、画面美观、报警维修及时的群控电梯远程监控系统。该系统最先运用多目标优化的方法构建目标函数,接着充分发挥粒子群算法的概念简单、收敛速度快和易于实现的优势,将模拟退火思想运用到粒子群算法中,创建粒子群-模拟退火算法,从而克服粒子群算法容易陷入局部最优的弊端。利用该算法对目标函数进行优化,从而上位机根据算法结果,合理调度电梯,进而实现优化电梯运行性能的目的。经过MATLAB仿真分析表明,该系统节省了平均候梯时间、平均乘梯时间和系统能耗,缩短了故障时间和维修时间,提高了电梯的运行效率,具有较大的应用前景。
[Abstract]:With the rapid development of science and technology and the rapid progress of social economy, the high-level construction industry has initially become an important symbol of modern cities, as a vertical means of transport, the elevator bears a large number of people and logistics transport responsibility, so,There is a need for more research on elevators.A group control elevator remote monitoring system is put forward to solve the problems such as more elevators, scattered elevators, untimely maintenance and so on. A group control elevator remote monitoring system with optimal dispatching, beautiful picture and timely alarm maintenance is put forward.The system first uses the multi-objective optimization method to construct the objective function, and then gives full play to the advantages of the particle swarm optimization (PSO), such as simple concept, fast convergence and easy realization, and applies the idea of simulated annealing to the PSO.PSO-simulated annealing algorithm is created to overcome the disadvantage that PSO is prone to fall into local optimum.The algorithm is used to optimize the objective function, so that the upper computer can reasonably dispatch the elevator according to the result of the algorithm, and then realize the purpose of optimizing the elevator performance.The MATLAB simulation results show that the system can save the average waiting time, the average ladder time and the energy consumption of the system, shorten the failure time and maintenance time, improve the running efficiency of the elevator, and have a great application prospect.
【学位授予单位】:辽宁工程技术大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU976.3;TP277
【参考文献】
相关期刊论文 前10条
1 李莉;李洪奇;王超;孙晶莹;崔刚;;基于粒子群算法的智能电梯群控系统调度[J];计算机科学;2012年S3期
2 于德亮;唐海燕;丁宝;张永明;齐维贵;;基于粒子群优化模糊核聚类的电梯群交通模式识别[J];哈尔滨工业大学学报;2012年10期
3 许玉格;宋亚龄;罗飞;赵小翠;;基于目的层预约的改进型粒子群电梯群控调度策略[J];北京交通大学学报;2012年05期
4 顾妍午;;基于RPSO的分布式电梯群控系统调度算法的优化[J];计算机科学;2012年S1期
5 杜继永;张凤鸣;李建文;杨骥;;一种具有初始化功能的自适应惯性权重粒子群算法[J];信息与控制;2012年02期
6 刘润莉;白金平;唐平;;电梯远程监控系统的设计[J];控制工程;2011年S1期
7 唐海燕;齐维贵;丁宝;;Prediction of elevator traffic flow based on SVM and phase space reconstruction[J];Journal of Harbin Institute of Technology;2011年03期
8 王永贵;韩瑞莲;;基于改进蚁群算法的云环境任务调度研究[J];计算机测量与控制;2011年05期
9 叶蓉;赵灵锴;;基于蚁群粒子群混合的无线传感器网络定位算法[J];计算机测量与控制;2011年03期
10 孙丽娜;;电梯群控技术的发展状况[J];中国科技信息;2010年23期
,本文编号:1740206
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/1740206.html