混凝—超滤工艺化学强化反冲洗副产物及膜清洗效果研究
发布时间:2018-04-26 02:39
本文选题:混凝超滤 + 膜污染 ; 参考:《天津大学》2014年硕士论文
【摘要】:随着社会的进步、经济的发展以及人口的急剧增加,中国的水资源问题变得日益严重。水资源短缺、需求大幅度增加、水体污染严重等问题已成为我国经济社会发展的重要制约因素,同时也加重了水处理的困难,给传统的饮用水处理带来了严峻的挑战。越来越多的新型水处理工艺随之被开发出来,以达到提高饮用水水质的目的。膜技术因其所具有的优点而成为饮用水处理的一个重大突破,是21世纪最有前景的水处理技术之一。但膜技术是物理分离技术,对于水中小分子有机污染物等的去除率不高,会造成严重的膜污染。化学清洗无疑是解决膜污染的有效手段,但同时存在潜在的二次污染,给饮用水处理带来了水质安全风险。本研究是在混凝-超滤装置的基础上,对膜进行在线化学强化反冲洗,建立反冲洗副产物的检测分析方法,分析膜清洗药剂与膜污染物质反应产生的副产物,对生成的副产物的种类进行甄别和筛选,确定典型反冲洗副产物;通过调节化学强化反冲洗水力参数(反洗压力、反洗流量、反洗时间、反洗周期),分析其对典型副产物的生成和膜清洗效果的影响,以及化学强化反冲洗调控参数与典型副产物生成量变化和膜清洗效果的关系,确定最佳在线化学清洗参数,实现膜清洗技术的优化调控。本研究建立了顶空进样-气相色谱检测水中挥发性卤代烃以及高效液相色谱-质谱联用检测水中卤乙酸的方法,确定了12种挥发性卤代烃以及9种卤乙酸类化合物,卤乙酸占了副产物总量的85%以上,且所有典型副产物随着膜过滤出水时间的延长,浓度均逐渐降低;综合考察单一因素变化对典型副产物生成和膜清洗效果的影响,最终确定膜化学反冲洗的最佳清洗参数为:反洗时间4min、反洗周期120min、反洗药剂浓度25mg/L、反洗流量20L/(m2·h);选用致癌风险评价典型副产物对人类健康的影响,在最佳参数反洗条件下,副产物总的致癌风险为52.881×10~(-6)。
[Abstract]:With the progress of society, the development of economy and the rapid increase of population, the problem of water resources in China becomes more and more serious. The shortage of water resources, the increase of demand and the serious pollution of water have become the important restricting factors for the development of our country's economy and society. At the same time, the difficulties of water treatment have been aggravated, which has brought severe challenges to the traditional treatment of drinking water. More and more new water treatment processes have been developed to improve drinking water quality. Membrane technology has become an important breakthrough in drinking water treatment because of its advantages. It is one of the most promising water treatment technologies in the 21 ~ (st) century. However, the membrane technology is a physical separation technology, the removal rate of small molecular organic pollutants in water is not high, which will cause serious membrane fouling. Chemical cleaning is undoubtedly an effective means to solve membrane fouling, but there is potential secondary pollution at the same time, which brings water quality safety risk to drinking water treatment. On the basis of coagulation-ultrafiltration device, the membrane was chemically strengthened and backwash was carried out on line, and the detection and analysis method of backwash by-product was established, and the by-product produced by the reaction between membrane cleaning agent and membrane fouling substance was analyzed. The kinds of by-products produced are screened and screened to determine the typical backwash by-products, and the hydraulic parameters (backwash pressure, backwash flow rate, backwash time) are adjusted by adjusting chemical reinforcement backwash hydraulic parameters. This paper analyzes the influence of backwash cycle on the formation of typical by-products and the effect of membrane cleaning, as well as the relationship between the control parameters of chemical reinforcement backwashing and the change of production quantity of typical by-products and the effect of membrane cleaning, and determines the best on-line chemical cleaning parameters. Realize the optimal control of membrane cleaning technology. In this study, a headspace sample injection gas chromatography method for the detection of volatile halogenated hydrocarbons in water and a high performance liquid chromatography-mass spectrometry method for the detection of haloacetic acid in water were established. Twelve volatile halogenated hydrocarbons and 9 haloacetic acids were determined. Halogenoacetic acid accounted for more than 85% of the total by-products, and the concentration of all typical by-products decreased gradually with the increase of effluent time of membrane filtration, and the effects of single factor on the formation of typical by-products and the cleaning effect of membrane were investigated. The optimal cleaning parameters were determined as follows: backwash time 4 min, backwash period 120 min, backwash agent concentration 25 mg / L, backwash flow rate 20L/(m2 HN. The risk of carcinogenesis was selected to evaluate the effects of typical by-products on human health. The total carcinogenic risk of by-products was 52.881 脳 10 ~ (-1) -6 ~ (-1).
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU991.2
【参考文献】
相关期刊论文 前10条
1 张韬;;生活饮用水处理技术的发展[J];中国高新技术企业;2013年23期
2 张英俊;;饮用水常规处理工艺及其强化技术[J];西南给排水;2012年05期
3 夏军;翟金良;占车生;;我国水资源研究与发展的若干思考[J];地球科学进展;2011年09期
4 刘艳;饶竹;路国慧;贾静;沈亚婷;李松;;饮用水中9种卤乙酸的超高效液相色谱法测定[J];分析测试学报;2011年03期
5 郝瑞霞;万宏文;张庆康;马忠志;刘峰;周冬文;;顶空进样-GC-MS-∑SIM分析再生水中三卤甲烷[J];北京工业大学学报;2011年02期
6 陈有军;周大农;刘永康;徐扬;于建伟;杨敏;;给水预处理技术的研究与应用[J];给水排水;2011年02期
7 史慧婷;杨艳玲;李星;王毅;李圭白;;混凝-超滤处理低温低浊受污染水试验研究[J];哈尔滨商业大学学报(自然科学版);2010年02期
8 陈艳;伏小勇;于晓华;董秉直;高乃云;范瑾初;;混凝防止膜污染的研究[J];给水排水;2010年01期
9 张博丰;马世虎;;超/微滤膜的膜污染与膜清洗研究[J];供水技术;2009年06期
10 朱建文;顾渊;代荣;;饮用水深度处理中膜清洗方式的研究[J];中国给水排水;2009年23期
,本文编号:1804136
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/1804136.html