当前位置:主页 > 管理论文 > 城建管理论文 >

含蓄冰空调的楼宇分布式能源系统优化

发布时间:2018-06-25 09:18

  本文选题:蓄冰空调 + 楼宇分布式能源系统 ; 参考:《华南理工大学》2014年硕士论文


【摘要】:随着全球经济快速发展与化石能源短缺,提高能源利用率和保护地球环境问题日益突出。在此背景下,分布式能源系统受到广泛重视。但分布式能源系统投资很高,须对各设备进行合理的配置才能发挥其优势。此外,很多地区峰谷差明显,在用电高峰时严重缺电,而低谷时又有大量容量得不到充分利用,严重影响电网的经济性。蓄冰空调能利用夜间的廉价电力制冰,在白天将夜间所制的冰作为冷源释放冷。因此,建立含蓄冰空调的楼宇分布式电源系统,可以降低用电成本,具有重大实际意义。 本文对广东某地区大型楼宇的楼宇能耗以及其冷电负荷进行了调研,根据其电负荷特征,将楼宇分为了负荷连续型楼宇和负荷间断型楼宇,又根据负荷的重要程度,,将负荷间断型楼宇细分为有重要负荷和无重要负荷并分别对这三种楼宇的单位面积耗电、终端能耗以及各季节典型日的冷电负荷进行了分析。 为实现楼宇分布式能源系统的经济运行,本文构建了含蓄冰空调的楼宇分布式能源系统双层优化模型。该模型下层为基于混合整数规划算法的优化配置模型,上层则粒子群算法寻找系统最优设备配置容量,以增量投资回收期最短为优化目标进行容量优化计算。上层将设备类型及设备容量优化结果传递给下层,下层通过日运行费用最小为目标进行优化,再目标值作为粒子群算法的适应度返回上层,层层进化后最终给出最优的投资回收期及设备容量和运行策略方案。 运用上述模型,在当前市场的电价和天然气价的市场条件下,分别对三种楼宇的楼宇分布式能源系统进行优化,得到了各典型楼宇含蓄冰空调的楼宇分布式能源系统容量和运行方案。最后分别针对各典型楼宇,对比分析了其分布式能源系统优化配置方案与不接入含蓄冰空调的分布式能源系统的常规分供系统的经济性,并探讨了建筑面积、冷电比和重要负荷系数变化时对增量投资回收期和分布式能源系统的容量配置产生的影响。研究表明:含蓄冰空调的楼宇分布式能源系统经过合理的优化配置和调度可取得很好的经济效益,避开用电高峰,提高环保性。
[Abstract]:With the rapid development of global economy and the shortage of fossil energy, the problems of improving energy efficiency and protecting the earth's environment are becoming increasingly prominent. In this context, distributed energy systems have received extensive attention. But the investment of distributed energy system is very high. In addition, in many areas, the peak and valley difference is obvious, the power consumption peak time is serious lack of electricity, but at the low point, a large number of capacity is not fully utilized, which seriously affects the economy of power grid. Ice storage air conditioning can use the cheap electricity at night to make ice and release the ice made at night as a cold source during the day. Therefore, it is of great practical significance to set up a building distributed power system with ice-implicit air-conditioning, which can reduce the cost of electricity consumption. This paper investigates the energy consumption and cooling load of large buildings in a certain area of Guangdong province. According to the characteristics of power load, the buildings are divided into continuous load building and discontinuous load building, and according to the importance of load. The discontinuous load buildings are divided into two types: important load and no important load. The unit area power consumption, terminal energy consumption and cooling load of typical days in each season are analyzed respectively. In order to realize the economic operation of building distributed energy system, a bilevel optimization model of building distributed energy system is constructed in this paper. The lower layer of the model is an optimal configuration model based on mixed integer programming algorithm. The upper layer particle swarm optimization algorithm is used to find the optimal configuration capacity of the system, and the optimal capacity is calculated with the shortest payback period of incremental investment as the optimization objective. The upper layer transfers the result of equipment type and equipment capacity optimization to the lower layer, the lower layer optimizes through the minimum daily operation cost, and the target value is returned to the upper layer as the fitness of the particle swarm optimization algorithm. After evolution, the optimal investment payback period, equipment capacity and operation strategy are given. Using the above model, under the current market conditions of electricity price and natural gas price, the distributed energy systems of three kinds of buildings are optimized respectively. The distributed energy system capacity and operation scheme of ice-storage air-conditioning system for typical buildings are obtained. Finally, according to the typical buildings, the economy of the distributed energy system optimal allocation scheme and the conventional energy distribution system without ice storage air conditioning is analyzed, and the building area is discussed. The influence of the change of the cooling power ratio and the important load coefficient on the recovery period of the incremental investment and the capacity allocation of the distributed energy system. The results show that the distributed energy system with ice storage air conditioning system can achieve good economic benefits, avoid the peak power consumption and improve the environmental protection through reasonable optimal allocation and scheduling.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU831

【参考文献】

相关期刊论文 前10条

1 ;国家发展改革委发布我国第一个《节能中长期专项规划》——国家发展改革委有关负责人答记者问[J];节能与环保;2004年11期

2 忻奇峰;冷热电三联供系统在浦东国际机场的应用[J];电力需求侧管理;2004年05期

3 黄伟;黄民翔;赵学顺;甘德强;;基于主从递阶决策模型的TRM评估[J];电力系统自动化;2006年04期

4 耿建;徐帆;姚建国;高宗和;丁恰;杨争林;程芸;陈刚;;求解安全约束机组组合问题的混合整数规划算法性能分析[J];电力系统自动化;2009年21期

5 姚伟锋;赵俊华;文福拴;薛禹胜;辛建波;;基于双层优化的电动汽车充放电调度策略[J];电力系统自动化;2012年11期

6 谢国辉;张粒子;舒隽;苏济归;;基于分层分枝定界算法的机组组合[J];电力自动化设备;2009年12期

7 郑国耀,李道林,张时飞;黄浦区中心医院“热、电、冷”三联供工程设计及实践[J];动力工程;1999年03期

8 苟格;整数规划中的割平面法与分枝定界法比较[J];达县师范高等专科学校学报;2005年02期

9 彭宇,彭喜元,刘兆庆;微粒群算法参数效能的统计分析[J];电子学报;2004年02期

10 江亿;;我国建筑节能战略研究[J];中国工程科学;2011年06期

相关博士学位论文 前6条

1 刘衍民;粒子群算法的研究及应用[D];山东师范大学;2011年

2 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年

3 刘波;计及分布式电源的电力系统潮流及可靠性与稳定性研究[D];上海交通大学;2009年

4 王江江;楼宇级冷热电联供系统优化及多属性综合评价方法研究[D];华北电力大学;2012年

5 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年

6 于波;微网与储能系统容量优化规划[D];天津大学;2012年



本文编号:2065431

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2065431.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ef01c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com