扩孔型端板连接钢结构新型节点性能研究
本文选题:钢结构 + 端板 ; 参考:《福州大学》2014年硕士论文
【摘要】:本文研究的扩孔型端板节点是一种新型的钢框架梁柱节点,通过在连接件上开长圆孔来提高节点的抗震性能。新型节点具有高延性、良好耗能能力、易修复和施工方便等特点。本文首先根据相关规范提出了新型节点初步设计方法并结合算例进行设计,然后通过试验与有限元模型对新型节点的滞回性能进行了研究,最后结合试验与有限元的分析结果对初步设计方法进行修正。通过6个新型节点,1个狗骨式和1个传统端板对比节点的低周反复加载试验,研究了新型节点在荷载作用下的滞回特性、承载力、延性及耗能能力等力学性能,并与狗骨式节点、传统端板节点性能作对比。试验结果表明:新型节点极限承载力较狗骨式节点有很大提高,是狗骨式节点的1.3~1.4倍;新型节点的延性系数在17.5~26.4之间,是传统端板节点的1.8~2.78倍,是狗骨式节点的1.68~2.54倍,新型节点的延性可以通过扩孔大小进行控制;新型节点极限转角在0.083~0.126之间,是狗骨式节点的2.1~3.15倍,是传统端板节点的1.77~2.68倍;新型节点的最大滞回耗能系数amax是传统端板节点的1.77~3.58倍,是狗骨式节点的1.26~2.56倍;新型节点的滞回耗能系数总和DDN是传统端板节点的2.45~4.48倍,是狗骨式节点的1.62~2.97倍;新型节点的总耗能面积是传统端板节点的1.77~3.13倍,是狗骨式节点1.87~2.55倍,其中新型节点由扩孔贡献的摩擦耗能占总耗能面积的5.83%~45.23%,由此可见,通过扩孔可显著增加节点的耗能能力。利用Abaqus软件建立了新型节点的有限元分析模型,有限元分析结果与试验结果在滞回曲线、破坏模式、连接件的变形、测点屈服时的荷载等方面均吻合良好。有限元与试验节点的滑移荷载最大相差8.1%,最小相差1.9%,二者比较接近;极限荷载最大相差17.2%,最小相差9.6%,极限状态下有限元模拟的结果偏于保守;有限元极限荷载下验算表明,设计荷载下撬力公式不适用于极限状态下撬力的计算。试验与有限元结果综合分析表明:1)在对梁上连接螺栓进行验算时,弯矩应取梁上连接螺栓群中心处的截面弯矩,但在初步设计时,弯矩可近似取柱翼缘表面的根部弯矩;2)极限状态下,节点的转动中心从梁截面的中轴线处转移至端板的受压根部;3)极限状态下,端板连接部分应以端板的受压根部为转动中心进行端板和柱翼缘螺栓的整体受力分析。
[Abstract]:The extended end plate node in this paper is a new type of steel frame beam column joint. Through the opening of long circle Kong Lai on the connector, the seismic performance of the joint is improved. The new node has the characteristics of high ductility, good energy dissipation, easy repair and convenient construction. A numerical example is designed, and then the hysteresis performance of the new node is studied by the experiment and the finite element model. Finally, the preliminary design method is modified with the results of the test and the finite element analysis. The new node is studied by the low cycle repeated loading test of 6 new nodes, 1 dog bone and 1 traditional end plate contrast nodes. The hysteretic characteristics, bearing capacity, ductility and energy dissipation capacity of the dog bone type joints and the traditional end plate joints are compared with the dog bone node and the traditional end plate node. The experimental results show that the ultimate bearing capacity of the new type joints is much higher than that of the dog bone node, which is 1.3 to 1.4 times more than that of the dog bone node; the ductility coefficient of the new node is between 17.5 and 26.4. It is 1.8 to 2.78 times of the traditional end plate node and 1.68 to 2.54 times of the dog bone type node. The ductility of the new node can be controlled by the size of the hole enlargement. The ultimate angle of the new node is between 0.083 and 0.126, 2.1 to 3.15 times the dog bone node, and 1.77 to 2.68 times the traditional end plate node, and the maximum hysteretic energy dissipation coefficient am of the new type node. The ax is 1.77 to 3.58 times that of the traditional end plate node, 1.26 to 2.56 times the dog bone node, and the hysteretic energy dissipation coefficient of the new node is 2.45 to 4.48 times that of the traditional end plate node and 1.62 to 2.97 times the dog bone node. The total energy dissipation area of the new node is 1.77 to 3.13 times that of the traditional end plate node, and the dog bone node 1.87 to 2.55 times. The friction energy of the new node contributes 5.83% to 45.23% of the total energy dissipation area. Thus, it can be seen that the energy dissipation of the node can be significantly increased by the reaming. The finite element analysis model of the new node is established by using the Abaqus software. The finite element analysis results and the test results are in the hysteresis curve, the failure mode, the deformation of the connector, and the measurement. The maximum difference between the load and the load of the point yield is good. The maximum difference between the slip load of the finite element and the test node is 8.1%, the minimum difference is 1.9%, the two is close, the maximum difference of the ultimate load is 17.2%, the minimum difference is 9.6%, the result of the finite element simulation under the limit state is conservative; the checking calculation under the finite element limit load shows that the pry force under the design load The formula does not apply to the calculation of the prying force under the limit state. The comprehensive analysis of the test and the finite element results shows that: 1) when checking the connecting bolt on the beam, the bending moment should be taken on the section of the center of the bolt group at the center of the beam, but at the initial design, the bending moment can approximate to the root bending moment of the surface of the flange surface of the column; under the limit state, the transfer of the node. The moving center is transferred from the central axis of the beam section to the compression root of the end plate; 3) under the limit state, the end plate connection should be taken as the rotating center of the end plate to carry out the overall stress analysis of the end plate and the column flange bolt.
【学位授予单位】:福州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU391
【参考文献】
相关期刊论文 前10条
1 冯双;;钢框架梁端翼缘板加强型节点的数值研究[J];钢结构;2013年01期
2 王燕;毛辉;;梁端翼缘扩大型连接的抗震性能研究[J];土木工程学报;2012年S1期
3 刘秀丽;王燕;;中美欧高强度螺栓外伸端板连接设计方法比较[J];西安建筑科技大学学报(自然科学版);2012年01期
4 吴雯;王磊;;浅谈多高层钢结构梁柱节点抗震延性的提高[J];民营科技;2011年10期
5 石永久;王萌;王元清;施刚;;钢框架端板连接半刚性节点受力性能分析[J];工程力学;2011年09期
6 王燕;郁有升;王鹏;;钢框架梁端翼缘板式加强型节点力学性能试验研究[J];工程力学;2011年03期
7 王玉田;王燕;姜福香;;钢框架加强型梁柱连接的抗震机理研究[J];西安建筑科技大学学报(自然科学版);2011年01期
8 郑鹤鸣;;门式刚架梁柱端板连接节点设计理论研究[J];山西建筑;2010年32期
9 王琼芬;周东华;刘德稳;陈旭;;端板型螺栓连接钢节点设计方法[J];江南大学学报(自然科学版);2010年05期
10 李凤霞;布欣;王新武;;单调荷载作用下顶底角钢梁柱连接的受力性能[J];自然灾害学报;2010年03期
相关博士学位论文 前2条
1 赵伟;梁柱外伸端板螺栓连接中若干问题研究[D];浙江大学;2006年
2 施刚;钢框架半刚性端板连接的静力和抗震性能研究[D];清华大学;2005年
相关硕士学位论文 前1条
1 廖新军;门式刚架钢结构端板连接节点承载性能的研究[D];清华大学;2004年
,本文编号:2071515
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2071515.html