臭氧—活性炭工艺处理山西地区引黄水库微污染水实验研究
本文选题:臭氧-活性炭 + 微污染 ; 参考:《哈尔滨工业大学》2014年硕士论文
【摘要】:山西地区引黄水库水因受上游工矿企业的污染和水文气候条件的影响,水体呈微污染现状,同时还存在石油类和酚类物质季节性超标的风险,水厂现有工艺难以保证出水水质要求。本文针对性的开展了活性炭优选实验、活性炭滤池运行参数优化、臭氧氧化工艺运行参数优化以及臭氧-活性炭工艺对特殊污染物去除效能研究。 通过分析比较1#炭、2#炭、3#炭及4#炭的碘值、亚甲基蓝值、吸附速度、吸附容量以及等温吸附曲线,初步优选出活性炭顺序为:3#炭2#炭4#炭1#炭。中试实验中考察了四种活性炭滤池对UV254、、CODMn以及氨氮的去除效能,研究结果表明:3#炭处理效果最佳,2#炭次之,1#炭最差。 炭滤池运行参数优化实验结果表明:当炭床停留时间小于15min时,炭滤池对污染物的去除率随炭床停留时间的延长而不断增加,当炭床停留时间大于15min时,炭滤池对污染物的去除效果趋于稳定;炭滤池对UV254、CODMn以及氨氮的去除率随炭床厚度的增加而先增加后趋于稳定,对应炭层的最小厚度分别为90cm、70cm、90cm;过滤初期出水中污染物浓度较高,随着过滤时间的延长,出水中污染物浓度先降低后趋于稳定,初滤水处理时间不宜低于30min;炭滤池过滤周期不宜超过7-8天;单独高速水流反冲洗时,反冲洗方案四效果最佳,气-水联合反冲洗时,方案四和方案五反冲效果最佳,且气-水反冲洗效果优于单独水流反冲洗。 臭氧氧化工艺运行参数优化实验结果表明:两级臭氧投加方式优于单级臭氧投加方式,最优投加比例为1:1,且在最佳投加方式和投加比例下,臭氧-活性炭工艺去除水中的颗粒物、UV254、CODMn以及氨氮的最佳臭氧投加量分别为2.0-2.5mg/L、2.0mg/L、2.0mg/L、2.0-2.5mg/L,出水中的颗粒物、UV254、CODMn以及氨氮浓度可有效控制在100CNT/ml以下、0.0069cm-1、0.81mg/L、0.031mg/L。 臭氧-活性炭工艺对特殊污染物去除实验结果表明:合理地优化臭氧氧化工艺,可有效地控制炭滤池出水中的溴酸盐及甲醛在5.2ug/L和20ug/L(仪器检出限)以下。臭氧-活性炭工艺能够较好地控制消毒副产物的生成,对三氯甲烷消毒副产物前体物(THMFP)和卤乙酸消毒副产物前体物(HAAFP)去除率分别为30.58%、58.95%。经臭氧氧化后臭氧接触塔出水中的可生物同化有机碳(AOC)浓度大幅升高,经活性炭滤池处理后出水中AOC浓度为31.36ug/L,,去除率为63.25%。当原水中CODMn或氨氮浓度较高时,分别调整臭氧投加量为2.3mg/L、2.5mg/L,其最佳去除率分别为69.13%、91.67%。当原水中石油类物质或苯酚超标时,调整臭氧投加量为3.0mg/L,出水中石油类物质和苯酚的浓度有效地控制在0.05mg/L以下、0.002mg/L以下,满足生活饮用水卫生标准。
[Abstract]:Due to the pollution of upstream industry and mining enterprises and the influence of hydrological and climatic conditions, the water of the Yellow River diversion Reservoir in Shanxi Province is slightly polluted. At the same time, there is the risk that petroleum and phenolic substances will exceed the standard seasonally. The existing process of water plant is difficult to ensure the quality of effluent. In this paper, the optimal selection experiment of activated carbon, the optimization of operating parameters of activated carbon filter, the optimization of operating parameters of ozone oxidation process and the removal efficiency of special pollutants by ozonic-activated carbon process were studied. By analyzing and comparing the iodine value, methylene blue value, adsorption rate, adsorption capacity and isothermal adsorption curve of 1# / 2# carbon, the order of activated carbon was chosen as: the order of the activated carbon was: 1929 carbon-# 1# carbon. The results show that the order of the activated carbon is: the ratio of iodine value, methylene blue value, adsorption rate, adsorption capacity and isothermal adsorption curve. The removal efficiency of four kinds of activated carbon filters on COD mn and ammonia nitrogen of UV254 was investigated in the pilot experiment. The results showed that the best treatment effect of the carbon was at 1: 2#, followed by the # carbon. The experimental results show that when the residence time of carbon bed is less than 15min, the removal rate of pollutants increases with the increase of residence time of carbon bed, and when the residence time of carbon bed is larger than 15min, the removal rate of pollutants increases with the increase of retention time of carbon filter. The removal rate of UV254CODMn and ammonia nitrogen increased firstly and then stabilized with the increase of carbon bed thickness, the minimum thickness of carbon layer was 90 cm ~ (70) cm ~ (-1) ~ 90 cm respectively. With the prolongation of filtration time, the concentration of pollutants in the effluent decreases first and then tends to be stable, and the initial treatment time is not less than 30 min; the filtration period of carbon filter should not exceed 7-8 days; In the case of air-water combined backwashing, the backwash effect of scheme four and five is the best, and the air-water backwashing effect is better than that of single flow backwash. The experimental results of operating parameters optimization of ozone oxidation process show that the two-stage ozone addition mode is superior to the single-stage ozone adding mode, and the optimal ratio of ozone addition is 1: 1, and under the optimum addition mode and proportion, The optimal ozone dosages of UV254CODMn and NH3-N were 2.0-2.5mg / L 2.0 mg / L 2.0-2.5mg / L respectively, UV254CODMn and NH3-N concentration could be effectively controlled under 100CNT / ml 0.0069 cm ~ (-1) ~ 0.81 mg / L ~ (-1) mg 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) ~ (-1) mg 路L ~ (-1) 路L ~ (-1). The experimental results of removing special pollutants by ozone activated carbon process show that by optimizing ozone oxidation process reasonably, bromate and formaldehyde in the effluent of carbon filter can be effectively controlled below 5.2ugr / L and 20ugr / L (instrument detection limit). The ozonic-activated carbon process can control the generation of disinfection by-products. The removal rates of THMFP and HAAFP were 30.58 and 58.95, respectively. After ozonation, the concentration of bioassimilable organic carbon (AOC) in the effluent of the ozone contact column increased significantly. After treatment with activated carbon filter, the concentration of AOC in the effluent was 31.36ugr / L, and the removal rate was 63.25g / L. When the concentration of CODMn or ammonia nitrogen in raw water is high, the ozone dosage is adjusted to 2.3 mg / L and 2.5 mg / L respectively, and the optimum removal rate is 69.13 and 91.67 respectively. When the petroleum or phenol in raw water exceeds the standard, the ozone dosage is adjusted to 3.0 mg / L, and the concentration of petroleum and phenol in the effluent is effectively controlled below 0.05 mg / L or less than 0.002 mg / L, which meets the sanitary standard of drinking water.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU991.2
【参考文献】
相关期刊论文 前10条
1 朱玉仙,黄义星,王丽杰;水资源可持续开发利用综合评价方法[J];吉林大学学报(地球科学版);2002年01期
2 梁涛;马军;任芝军;;预氧化/BAC与常规工艺去除AOC的效果对比[J];中国给水排水;2009年19期
3 董艳红;王立军;闫钰;孙杨;王琪;王琨;杜春山;俞双;;臭氧/生物活性炭工艺深度处理微污染原水中试[J];中国给水排水;2013年09期
4 胡定金;;浅谈我国水污染的主要成因及防治对策[J];湖北农业科学;2010年09期
5 张兰河;郭益平;王璐瑶;王旭明;;臭氧氧化—曝气生物滤池联合工艺处理低温高浓度苯酚废水[J];化工环保;2011年06期
6 吴永文,李忠,奚红霞,李祥斌,韩静磊,郭建光;高聚物吸附剂的孔隙结构和表面特性对苯酚吸附容量的影响[J];化工学报;2003年11期
7 于万波;臭氧-生物活性炭技术在微污染饮用水处理中的应用[J];环境技术;2003年02期
8 ;Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water[J];Journal of Environmental Sciences;2012年06期
9 童星;裴毅;;我国南方水资源存在的问题及对策[J];湖南农机;2009年11期
10 张学佳;纪巍;康志军;孙大勇;单伟;王建;;石油类污染物对土壤生态环境的危害[J];化工科技;2008年06期
本文编号:2078191
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2078191.html