当前位置:主页 > 管理论文 > 城建管理论文 >

钢板混凝土连梁抗剪性能试验与设计方法

发布时间:2018-08-17 15:39
【摘要】:高层建筑结构中,连梁对剪力墙的承载力、刚度、延性等具有重要影响。利用连梁的延性与耗能能力,耗散地震能量,连梁是剪力墙结构实现二道设防设计的重要构件。在连梁两端作用有反向弯矩,连梁截面厚度较小,对剪切变形敏感、容易剪切破坏。通过在连梁中配置钢板,使钢板和钢筋混凝土共同参与抗剪,从而改善普通钢筋混凝土连梁的抗剪性能。完成了跨高比为1.5的12个不同配板率的钢板混凝土连梁试件的拟静力试验。试验结果表明,由于内置钢板的存在,钢板混凝土连梁的抗剪承载力、位移延性和耗能能力明显高于钢筋混凝土连梁。配置钢板后,连梁的承载力得到了明显提高,并且承载力随配板率的增大而提高,当配板率增大到一定程度时,承载力提高的不再明显,继续增大配板率承载力反而下降;钢板混凝土连梁试件的滞回曲线包围的面积明显大于普通混凝土连梁,说明前者耗能能力远大于后者,而且随着配板率的增大,滞回曲线包围的面积增大。连梁中配置钢板后耗能能力显著提高,强度和刚度退化较慢,具有较好的抗震耗能能力,但配板率对连梁的耗能影响不大。对试验量测结果进行了详细的应变分析和抗剪承载力分析。实测应变表明,试件屈服之前,连梁反弯点位于跨中附近,而且连梁截面上的正应变分布基本满足平截面假定;在试件屈服之后,连梁反弯点逐渐向受压区移动,钢板截面高度中间具有较大的正应变,说明试件屈服后,该处钢板具有较大的轴力,而钢板截面上下边缘正应变相对较小,因此,钢板参与部分抗弯,其抗弯承载力由两部分组成,一部分是钢板截面模量抵抗的弯矩,一部分是钢板的轴力对混凝土受压区合力点产生的力矩。对试件中钢板和箍筋各自承担的剪力进行了定量的分析,并且分析了配板率对钢板抗剪所做贡献的影响,分析结果表明,在试件屈服之前,主要由混凝土抗剪,钢板与箍筋的主要作用是约束裂缝的开展;试件屈服之后,混凝土开裂并逐渐退出抗剪工作,原来由混凝土承担的剪力转移给箍筋和钢板,当连梁中钢板的抗剪能力发挥到一定程度时,箍筋的抗剪作用相对减弱。基于此,提出了钢板混凝土连梁的抗剪承载力计算公式以及合理的配板率范围。利用ABAQUS有限元程序,对试验中的试件进行了非线性有限元分析,分析结果与试验基本符合。对不同配板率的钢板混凝土连梁试件进行有限元模拟,根据分析结果,验证了本文提出的抗剪承载力计算公式的正确性,提出了钢板混凝土连梁的设计建议,以期为工程设计提供参考。
[Abstract]:In high-rise buildings, connecting beams have an important influence on the bearing capacity, stiffness and ductility of shear walls. Using the ductility and energy dissipation capacity of the connecting beam and dissipating seismic energy, the connected beam is an important component of the shear wall structure to realize the design of the second channel fortification. There is reverse bending moment at both ends of the connecting beam, the thickness of the connecting beam section is small, it is sensitive to shear deformation and easy to shear failure. The shear resistance of ordinary reinforced concrete beams can be improved by placing steel plate in the connecting beam and making the steel plate and reinforced concrete participate in the shear resistance together. The pseudostatic tests of 12 steel plate concrete beams with different ratio of span to height of 1.5 were carried out. The test results show that the shear capacity, displacement ductility and energy dissipation capacity of steel plate concrete connecting beam are obviously higher than that of reinforced concrete connecting beam due to the existence of built-in steel plate. The bearing capacity of the steel plate is obviously increased, and the bearing capacity increases with the increase of the plate distribution ratio. When the plate ratio increases to a certain extent, the increase of the bearing capacity is no longer obvious, but the bearing capacity decreases with the increasing of the plate distribution ratio. The area surrounded by hysteretic curve of steel plate concrete connecting beam is obviously larger than that of ordinary concrete connecting beam, which shows that the former's energy dissipation ability is much larger than the latter, and the area surrounded by hysteretic curve increases with the increase of plate matching ratio. The energy dissipation capacity of the steel plate in the connecting beam is obviously increased, the degradation of strength and stiffness is slow, and the energy dissipation ability is better, but the ratio of plate matching has little effect on the energy dissipation of the connected beam. The test results are analyzed in detail by strain analysis and shear capacity analysis. The measured strain shows that the reverse bending point of the connecting beam is near the middle of the span before the specimen yielding, and the normal strain distribution on the section of the connecting beam basically meets the assumption of the plane section, and after the specimen yielding, the reverse bending point of the connected beam moves gradually to the compression zone. There is a large positive strain in the middle of the section height of the steel plate, which indicates that after the specimen yield, the steel plate has a larger axial force, while the positive strain of the upper and lower edge of the steel section is relatively small, so the steel plate takes part in the partial bending resistance. The flexural bearing capacity is composed of two parts, one is the bending moment of the steel plate section modulus resistance, the other is the moment caused by the axial force of the steel plate to the point of joint force in the concrete compression zone. The shear forces of steel plate and stirrups in the specimens are quantitatively analyzed, and the effect of plate ratio on the shear resistance of steel plate is analyzed. The results show that the shear resistance of concrete is the main factor before the specimen yield. The main function of steel plate and stirrups is to restrain the crack development; after the specimen yield, the concrete cracks and gradually withdraw from the shear work, the shear force originally carried by the concrete transferred to the stirrups and steel plates. When the shear resistance of steel plate in the beam reaches a certain extent, the shear resistance of stirrups is relatively weakened. Based on this, the formula of shear bearing capacity of steel plate concrete connecting beam and the reasonable range of plate ratio are put forward. The nonlinear finite element analysis of the specimen in the experiment is carried out by using the ABAQUS finite element program. The results of the analysis are in good agreement with the test results. The finite element simulation of steel plate concrete connecting beam specimens with different slabs ratio is carried out. According to the analysis results, the correctness of the formula of shear bearing capacity proposed in this paper is verified, and the design suggestion of steel plate concrete connecting beam is put forward. In order to provide reference for engineering design.
【学位授予单位】:沈阳建筑大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU398.9

【相似文献】

相关期刊论文 前10条

1 陈景毅;连梁的结构设计[J];中外建筑;2004年03期

2 王结进,周汉志,卢伟锋,王占峰,王震国;一种连梁超筋的处理[J];平顶山工学院学报;2004年02期

3 刘迪,王全凤;框架-剪力墙结构中连梁问题的探讨[J];基建优化;2004年05期

4 周林聪;陈龙珠;陈晓宝;;连梁破坏模式与安全状态的简化判断[J];工业建筑;2006年03期

5 莫东;;浅议高层建筑结构设计中连梁超筋的解决办法[J];广西城镇建设;2007年11期

6 李珊;程建立;蒋悦;;浅谈高层建筑结构中的连梁[J];才智;2010年14期

7 胥玉祥;朱玉华;赵昕;李学平;;双连梁受力性能研究[J];结构工程师;2010年03期

8 徐民彦;;高层建筑抗震设计时剪力墙连梁的作用[J];科技信息;2011年11期

9 钟亚红;;高层建筑结构设计中的连梁超筋问题[J];科技与企业;2012年05期

10 吕西林;陈云;蒋欢军;;新型可更换连梁研究进展[J];地震工程与工程振动;2013年01期

相关会议论文 前10条

1 胡欣;乔清朝;;简议连梁超限处理[A];土木建筑学术文库(第14卷)[C];2010年

2 陈云涛;;双连梁的等效分析[A];第三届全国建筑结构技术交流会论文集[C];2011年

3 朱勇;周云;;钢板与钢筋混凝土连梁的组合协同作用机理分析[A];中国钢协钢-混凝土组合结构分会第十一次年会论文集[C];2007年

4 姜忻良;宣波;;剪力墙结构中双连梁的转角刚度等效方法[A];城市地下空间综合开发技术交流会论文集[C];2013年

5 郭秉山;王海飞;闫月梅;张成林;;剪力墙连梁在循环荷载下的受力性能研究[A];第二届全国工程结构抗震加固改造技术交流会论文集[C];2010年

6 胥玉祥;朱玉华;赵昕;;新型内嵌铅芯耗能连梁[A];第九届全国现代结构工程学术研讨会论文集[C];2009年

7 范重;李波;范学伟;;超高层建筑剪力墙短连梁有效配筋形式研究[A];建筑结构(2009·增刊)——第二届全国建筑结构技术交流会论文集[C];2009年

8 吴晋辉;吴伟田;;延性连梁设计浅议[A];土木建筑学术文库(第14卷)[C];2010年

9 李杰臣;苏园园;;高层剪力墙中连梁的设计[A];河南省土木建筑学会2010年学术大会论文集[C];2010年

10 张海洋;李璐;;关于剪力墙结构中连梁常见问题的探讨[A];土木建筑学术文库(第9卷)[C];2008年

相关重要报纸文章 前1条

1 ;市十二届人大三次会议副秘书长名单[N];湛江日报;2008年

相关博士学位论文 前3条

1 韩小雷;带刚性连梁的双肢剪力墙及其结构控制性能的研究[D];华南理工大学;1991年

2 车佳玲;FRC对角斜筋连梁及联肢剪力墙抗震性能与设计方法研究[D];西安建筑科技大学;2013年

3 杨忠;超高韧性水泥基复合材料构件受剪性能试验研究[D];合肥工业大学;2014年

相关硕士学位论文 前10条

1 王春晖;半通缝连梁抗震性能数值模拟分析[D];青岛理工大学;2015年

2 王利强;新型耗能连梁抗震性能研究[D];哈尔滨工业大学;2015年

3 施唯;钢筋混凝土连梁的破坏机制与损伤控制研究[D];中国地震局工程力学研究所;2015年

4 钟海牛;桁架式钢骨混凝土连梁抗震性能试验研究[D];广西大学;2015年

5 夏承柱;新型配筋形式小跨高比连梁抗震性能与抗剪承载力研究[D];中国矿业大学;2015年

6 胡京亚;新型可更换耗能连梁设计方法研究[D];广州大学;2015年

7 孙亚;带可更换钢连梁的混合联肢剪力墙抗震性能研究[D];清华大学;2015年

8 贾俊杰;混凝土剪力墙连梁基于延性的抗震性能研究[D];郑州大学;2016年

9 韩鑫;高层剪力墙结构中防屈曲约束支撑连梁不同布置对抗震性能影响的研究[D];长安大学;2016年

10 李一康;含钢率对改进焊接箍筋钢板—混凝土组合连梁的抗震性能研究[D];华北理工大学;2016年



本文编号:2188104

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2188104.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ca6bd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com