当前位置:主页 > 管理论文 > 城建管理论文 >

FRP-钢板复合材料基本力学性能和耐久性能研究

发布时间:2018-09-17 08:14
【摘要】:纤维增强聚合物(Fiber Reinforced Polymer,简称FRP)具有轻质、高强等优点被广泛应用于结构的补强加固。但是,FRP加固后的结构脆性性能显著,不利于结构抗震。本文结合国家自然科学基金项目(51108355)和湖北省自然科学基金项目(2011CDB269),提出了一种新型复合材料,即采用FRP与钢板混杂铺设形成FRP-钢板复合材料。这种新型复合材料可以充分发挥FRP与钢板力学性能的互补性,显著地改善单一加固材料的强度、延性和刚度。本文研究了FRP-钢板复合材料静力拉伸性能、温度作用下FRP-钢板复合材料的静力拉伸性能、温度作用下FRP与钢板的界面粘结性能、FRP-钢板复合材料在干湿交替老化作用下的耐久性能,主要包括以下几个方面: 1、对36个制作的FRP-钢板复合材料试件进行静力拉伸试验。研究FRP-钢板复合材料的基本力学性能,影响因素包括:纤维种类(碳纤维、玻璃纤维和玄武岩纤维)、纤维铺设层数、钢板厚度以及纤维铺设方式。研究结果表明:(1)CFRP与钢板混杂铺设形成的CFRP-钢板复合材料不但具有较高的强度,而且具有较好的塑性性能;GFRP与钢板混杂铺设形成的GFRP-钢板复合材料在钢板屈服后具有较好的延性性能;(2)当FRP铺设层数一定时,随着钢板厚度的增加,FRP-钢板复合材料的基本力学性能增强,但是增强幅度逐渐降低,当钢板厚度超过4mm时,降低速度增大;(3)FRP与钢板的铺设方式越对称、均匀,FRP-钢板复合材料受力性能越好。根据试验结果,采用复合材料力学中的混合法则,本文建立了FRP-钢板复合材料的应力-应变关系模型,理论计算值与试验值吻合较好。 2、对66个在30℃‖120℃温度作用下的CFRP-钢板复合材料和GFRP-钢板复合材料进行了静力拉伸试验。试验结果表明:随着温度升高,FRP-钢板复合材料的基本力学性能降低,在粘结胶体的玻璃化转化温度50℃附近降低速率较大。根据试验结果,本文分别提出了温度作用下,FRP-钢板复合材料弹性模量、钢板屈服后模量、屈服强度和纤维断裂强度计算公式,计算结果与试验结果吻合较好。 3、通过153个FRP与钢板的双向剪切试件,研究温度范围30℃~120℃作用下FRP与钢板的界面粘结性能。根据研究目的不同,采用两种FRP与钢板双向剪切模型进行试验研究。(1)FRP与钢板的双向剪切模型Ⅰ试验结果表明:1)随着温度升高,FRP与钢板双向剪切模型Ⅰ试件的破坏模式发生转变;2)随着温度升高,FRP与钢板双向剪切模型Ⅰ试件的极限强度和粘结刚度逐渐降低,在粘结胶体的玻璃化转化温度附近降低速率较大。根据试验结果,结合粘结胶体在温度作用下的力学性能退化关系,采用修正的Arrhenius(阿伦尼乌斯)方程,本文提出了FRP与钢板粘结刚度退化计算公式,计算结果与试验结果吻合较好。(2)FRP与钢板的双向剪切模型Ⅱ试验结果表明:1)随着温度升高,FRP与钢板双向剪切模型Ⅱ试件的极限强度降低;2)温度作用下,FRP与钢板双向剪切模型Ⅱ试件的破坏模式主要是FRP与钢板的剥离破坏;3)在研究FRP与混凝土粘结界面成果的基础上,本文建立了不同温度作用下FRP与钢板粘结剪应力-滑移关系模型,并提出了不同温度作用下,FRP与钢板粘结极限承载力计算公式,并将计算值与试验值对比,结果表明吻合较好。 4、通过120个试件研究干湿交替作用下CFRP-钢板复合材料的耐久性能。试验结果表明:(1)干湿交替作用对单侧铺设CFRP-钢板复合材料的屈服强度、纤维断裂强度影响较大,对弹性模量和钢板屈服后模量影响较小;(2)干湿交替作用对双侧铺设CFRP-钢板复合材料的屈服强度、纤维断裂强度、弹性模量以及纤维屈服后模量均有较大影响;(3)双侧铺设CFRP-钢板复合材料的力学性能退化速率高于单侧铺设CFRP-钢板复合材料。根据试验结果,本文建立了在干湿交替作用下CFRP-钢板复合材料静力拉伸性能计算模型,对CFRP-钢板复合材料在干湿交替环境下的基本力学性能损失进行预测分析,模型计算结果与试验结果吻合较好。本文提出了CFRP-钢板复合材料纤维断裂强度计算模型对CFRP-钢板复合材料在干湿交替环境下的使用寿命进行预测分析。
[Abstract]:Fiber Reinforced Polymer (FRP) is widely used in structural reinforcement because of its lightweight, high strength and other advantages. However, the brittleness of the structure strengthened by FRP is remarkable, which is not conducive to the seismic performance of the structure. A new kind of composite material, FRP-steel plate composite material, is developed by mixing FRP and steel plate. This new composite material can give full play to the complementarity of mechanical properties between FRP and steel plate and significantly improve the strength, ductility and stiffness of a single reinforcement material. The static tensile properties of FRP-steel sheet composites, the interfacial bond between FRP and steel sheet under temperature, and the durability of FRP-steel sheet composites under alternate wet-dry aging mainly include the following aspects:
1. Static tensile tests were carried out on 36 FRP-steel composite specimens. The basic mechanical properties of FRP-steel composite were studied. The influencing factors included fiber types (carbon fiber, glass fiber and basalt fiber), fiber layers, steel plate thickness and fiber laying methods. The CFRP-steel sheet composites formed by laying not only have higher strength but also better plasticity; the GFRP-steel sheet composites formed by mixing GFRP and steel sheet have better ductility after yield; (2) When the number of layers of FRP is fixed, with the increase of the thickness of steel sheet, the FRP-steel sheet composites are basically the same. The mechanical properties of FRP-steel sheet composites are enhanced, but the extent of reinforcement decreases gradually, and the reduction rate increases when the thickness of steel sheet exceeds 4 mm. (3) The more symmetrical and uniform the laying mode between FRP and steel sheet, the better the mechanical properties of FRP-steel sheet composites. According to the experimental results, the stress-stress of FRP-steel sheet Composites is established by using the mixing rule in composite mechanics. The theoretical value is in good agreement with the experimental data.
2. Static tensile tests were carried out on 66 CFRP-steel plate composites and GFRP-steel plate composites at 30 120 C. The results show that the basic mechanical properties of FRP-steel plate composites decrease with the increase of temperature, and the glass transition temperature of bonding colloid decreases greatly near 50. In this paper, the formulas for calculating the elastic modulus, post-yield modulus, yield strength and fiber fracture strength of FRP-steel sheet composites under the action of temperature are presented. The calculated results are in good agreement with the experimental results.
3. The interfacial bonding between FRP and steel sheet was studied by 153 specimens of FRP and steel sheet under the temperature range of 30 ~120 C. According to different research purposes, two kinds of two-way shear models were used to study the interfacial bonding between FRP and steel sheet. The ultimate strength and bond stiffness of FRP and steel plate bi-directional shear model I specimens decrease gradually with the increase of temperature, and the rate of decrease is larger near the glass transition temperature of bond colloid. According to the test results, the mechanical properties of bond colloid under the action of temperature are combined. Based on the modified Arrhenius equation, a formula for calculating the degradation of bond stiffness between FRP and steel plate is presented. The results are in good agreement with the experimental results. (2) The experimental results of two-way shear model II of FRP and steel plate show that: 1) the ultimate strength of two-way shear model II decreases with the increase of temperature. The failure modes of FRP and steel plate bi-directional shear model II specimens are mainly the peeling failure of FRP and steel plate under the action of temperature; 3) Based on the study of the results of the bond interface between FRP and concrete, the bond shear stress-slip relationship model of FRP and steel plate under the action of different temperatures is established, and the bond shear stress-slip relationship between FRP and steel plate under the action of different temperatures is proposed. The formula for calculating ultimate bearing capacity of steel plate is calculated, and the calculated value is compared with the experimental value.
4. The durability of CFRP-steel sheet composites was studied by 120 specimens under alternating wetting and drying. The results show that: (1) alternating wetting and drying have great influence on the yield strength and fiber fracture strength of unilateral CFRP-steel sheet composites, but little influence on elastic modulus and post-yield modulus of steel sheet; (2) alternating wetting and drying have great influence on both sides of the composites. The yield strength, fiber breaking strength, elastic modulus and post-yield modulus of CFRP-steel sheet composites have great influence. (3) The degradation rate of mechanical properties of CFRP-steel sheet composites with both sides is higher than that of CFRP-steel sheet composites with one side. The calculation model of static tensile properties of CFRP-steel plate composites is used to predict and analyze the basic mechanical properties loss of CFRP-steel plate composites under alternating wet and dry environments. The calculated results of the model are in good agreement with the experimental results. Prediction and analysis of service life under the environment.
【学位授予单位】:武汉大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TU599

【相似文献】

相关期刊论文 前10条

1 周履;用FRP力筋修建的预应力混凝土桥梁25例[J];国外桥梁;1998年04期

2 朱梦君,刘宏伟;纤维增强复合材料(FRP)的研究与应用[J];淮海工学院学报(自然科学版);2002年03期

3 柯志贵;黄丽华;;FRP受弯加固钢筋混凝土梁破坏形式研究综述[J];山西建筑;2009年04期

4 康惠明;;用玻璃钢(FRP)制造汽车零部件[J];汽车技术;1982年04期

5 董永祺;第十一届全国FRP年会在蓉举行[J];建材工业信息;1996年04期

6 张耀宏;;纤维强化复合材料(FRP)在工程机械上的应用[J];工程机械文摘;1997年01期

7 高娜;;纤维增强复合材料FRP的组分对性能的影响[J];山西建筑;2011年33期

8 董永祺;;1993年国内生产FRP壳体轿车简况[J];玻璃钢;1994年01期

9 蒋汉生,金义洪;FRP在建筑领域的应用[J];玻璃钢/复合材料;1999年03期

10 赵鸿汉;;天津龙泓公司大口径FRP给排水管道09年获大单 天津、山西两地合同额超亿元[J];纤维复合材料;2009年02期

相关会议论文 前10条

1 顾祥林;;FRP预应力混凝土结构体系[A];第八届全国结构工程学术会议论文集(第Ⅱ卷)[C];1999年

2 夏天祥;吕国龙;;日本FRP的回收[A];第十三届玻璃钢/复合材料学术年会论文集[C];1999年

3 王言磊;郝庆多;欧进萍;;FRP-混凝土组合梁试验研究[A];第五届全国FRP学术交流会论文集[C];2007年

4 吕文龙;陆瑞明;陈雯;Amen AGBOSSOU;;嵌入式FRP板加固钢筋混凝土受弯构件的试验研究[A];第五届全国FRP学术交流会论文集[C];2007年

5 程瑶;刘富勤;徐舜华;;FRP复合板桩性能探讨[A];第五届全国FRP学术交流会论文集[C];2007年

6 钱永嘉;;浅谈如何提高FRP模具的质量[A];第十二届玻璃钢/复合材料学术年会论文集[C];1997年

7 高丹盈;李趁趁;赵军;;纤维增强塑料(FRP)加固钢筋混凝土梁抗裂度的计算方法[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年

8 岳清瑞;杨勇新;李荣;;纤维增强复合材料(FRP)及其应用技术进展[A];“发展绿色技术,,建设节约结构”——第十四届全国混凝土及预应力混凝土学术会议论文集[C];2007年

9 余流;;FRP型材和FRP桥面板的工程应用[A];第六届全国现代结构工程学术研讨会论文集[C];2006年

10 金飞飞;冯鹏;叶列平;;轻质FRP人行天桥的动力特性研究[A];工业建筑(2009·增刊)——第六届全国FRP学术交流会论文集[C];2009年

相关重要报纸文章 前6条

1 赵鸿汉;上海茂迅客车“FRP大包围”出击国外客车配套市场[N];中国建材报;2009年

2 刘成;连云港维连公司开发出FRP废弃物料破碎机[N];中国建材报;2008年

3 ;FRP废弃物破碎机与波、平板流水线获专利[N];中国建材报;2002年

4 赵工;FRP游艇大型高档化带旺多领域商机[N];中国建材报;2008年

5 木易;FRP高速公路跨线桥市场前景广阔[N];中国建材报;2010年

6 本报记者 杭晓建;FRP与PVC共挤造增强型新门窗[N];中华建筑报;2002年

相关博士学位论文 前3条

1 李晓瑾;FRP-钢板复合材料基本力学性能和耐久性能研究[D];武汉大学;2014年

2 李建辉;混杂FRP及其加固腐蚀混凝土柱抗震性能试验与理论研究[D];北京工业大学;2010年

3 陈瑛;双材料梁界面力学模型及其在FRP-混凝土界面断裂研究中的应用[D];河海大学;2006年

相关硕士学位论文 前10条

1 徐瑞卿;外贴FRP-角钢组合加固节点方法研究[D];长安大学;2015年

2 单翠;配送中心多分拣区FRP建模及算法设计与分析[D];西南交通大学;2015年

3 何俊;高性能新型FRP闸门性能试验研究[D];中冶集团建筑研究总院;2013年

4 许小山;FRP/金属叠层板粘接界面强化机理与方法研究[D];大连理工大学;2015年

5 陈智;FRP-钢管约束混凝土损伤声发射监测及健康诊断[D];大连理工大学;2015年

6 姚明侠;温度与加载速度对FRP与钢板界面力学性能的影响[D];湖南大学;2016年

7 沈海彬;FRP型材节点连接长期性能及桁架结构分析[D];东南大学;2016年

8 雷文杰;外贴FRP混凝土受弯构件疲劳设计方法研究[D];东南大学;2016年

9 刘凌锋;FRP管与混凝土的粘结性能试验研究[D];东南大学;2016年

10 金茂鑫;FRP-钢复合管约束混凝土方柱抗震性能研究[D];大连理工大学;2016年



本文编号:2245270

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2245270.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8c3f8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com