基于反应谱方法的双曲冷却塔地震响应特征分析
发布时间:2018-10-08 10:06
【摘要】:为明确冷却塔结构的振型特征、不同振型在地震响应中贡献及地震内力环向分布特点,便于冷却塔结构设计,以某大型双曲冷却塔为例,在动力特性分析基础上采用反应谱方法进行地震响应计算,并与其它荷载作用下内力进行对比。研究表明,冷却塔振型可据其形状、方向分为环向与子午向谐波耦合振型、侧向弯曲振型、竖向伸缩振型及竖向扭转振型4类。第1类振型为冷却塔主振型;水平、竖向地震响应贡献分别来自第2、3类振型,第1、4类振型对地震作用均无贡献。侧弯振型的截面变形特征决定水平地震作用下塔筒内力在环向呈正弦或余弦分布。无论水平或竖向地震作用,塔筒中主要产生双向轴力,在下支柱主要产生轴力及弯矩,且水平地震作用产生的内力远大于竖向地震。较其它荷载作用效应,地震作用对塔筒的关键效应为塔筒中下区段内子午向拉力及塔筒顶端0.2HS范围内环向拉力,且地震效应对下支柱影响明显大于对塔筒影响。
[Abstract]:In order to clarify the mode characteristics of cooling tower structure, the contribution of different vibration modes to the seismic response and the characteristics of the internal force distribution in the earthquake are convenient for the structural design of the cooling tower. A large hyperbolic cooling tower is taken as an example. Based on the analysis of dynamic characteristics, the response spectrum method is used to calculate the seismic response, and the results are compared with the internal forces under other loads. The results show that the vibration modes of cooling tower can be divided into four types according to their shape and direction: toroidal and meridional harmonic coupling mode lateral bending mode vertical telescopic mode and vertical torsional mode. The first type of mode is the main mode of cooling tower, and the contribution of horizontal and vertical seismic response comes from the second and third types of vibration respectively, and the first and fourth type of vibration have no contribution to seismic action. The cross section deformation characteristics of lateral bending mode determine the sinusoidal or cosine distribution of the inner force of the tower tube under horizontal earthquake. No matter horizontal or vertical seismic action, the axial force is mainly produced in the tower and tube, the axial force and bending moment are mainly produced in the lower pillar, and the internal force produced by horizontal earthquake is much larger than that by vertical earthquake. Compared with other load effects, the key effects of seismic action on the tower tube are meridian tension in the middle and lower section of the tower tube and inner circular tension force in the 0.2HS range at the top of the tower tube, and the influence of seismic effect on the lower pillar is obviously greater than that on the tower tube.
【作者单位】: 郑州大学土木工程学院;
【基金】:中国博士后科学基金(2014M552016)
【分类号】:TU347;TU311.3
[Abstract]:In order to clarify the mode characteristics of cooling tower structure, the contribution of different vibration modes to the seismic response and the characteristics of the internal force distribution in the earthquake are convenient for the structural design of the cooling tower. A large hyperbolic cooling tower is taken as an example. Based on the analysis of dynamic characteristics, the response spectrum method is used to calculate the seismic response, and the results are compared with the internal forces under other loads. The results show that the vibration modes of cooling tower can be divided into four types according to their shape and direction: toroidal and meridional harmonic coupling mode lateral bending mode vertical telescopic mode and vertical torsional mode. The first type of mode is the main mode of cooling tower, and the contribution of horizontal and vertical seismic response comes from the second and third types of vibration respectively, and the first and fourth type of vibration have no contribution to seismic action. The cross section deformation characteristics of lateral bending mode determine the sinusoidal or cosine distribution of the inner force of the tower tube under horizontal earthquake. No matter horizontal or vertical seismic action, the axial force is mainly produced in the tower and tube, the axial force and bending moment are mainly produced in the lower pillar, and the internal force produced by horizontal earthquake is much larger than that by vertical earthquake. Compared with other load effects, the key effects of seismic action on the tower tube are meridian tension in the middle and lower section of the tower tube and inner circular tension force in the 0.2HS range at the top of the tower tube, and the influence of seismic effect on the lower pillar is obviously greater than that on the tower tube.
【作者单位】: 郑州大学土木工程学院;
【基金】:中国博士后科学基金(2014M552016)
【分类号】:TU347;TU311.3
【参考文献】
相关期刊论文 前7条
1 薛文;白国良;姚友成;赵钦;;超大型双曲冷却塔考虑不同场地类型的地震性能研究[J];水利与建筑工程学报;2010年04期
2 张军锋;葛耀君;赵林;;基于风洞试验的双曲冷却塔静风整体稳定研究[J];工程力学;2012年05期
3 张军锋;葛耀君;赵林;;双曲冷却塔结构特性新认识[J];工程力学;2013年06期
4 翁旭然;戴君武;胡扬;;超大型钢筋混凝土冷却塔模型地震模拟振动台试验研究[J];福州大学学报(自然科学版);2013年04期
5 柯世堂;赵林;葛耀君;;超大型冷却塔结构风振与地震作用影响比较[J];哈尔滨工业大学学报;2010年10期
6 张军锋;葛耀君;;双曲冷却塔温度效应分析[J];华中科技大学学报(自然科学版);2012年11期
7 李佳颖;任春玲;黄志龙;;自然通风冷却塔的实验及有限元分析[J];力学季刊;2007年03期
【共引文献】
相关期刊论文 前10条
1 沈国辉;王宁博;孙炳楠;楼文娟;;大型双曲冷却塔的自振特性[J];重庆大学学报;2012年02期
2 柯世堂;侯宪安;陈少林;;大型冷却塔结构多目标等效静风荷载分析[J];电力建设;2012年09期
3 柯世堂;陈少林;葛耀君;赵林;;超大型冷却塔随机地震响应分析[J];地震工程与工程振动;2012年06期
4 卢玉林;陈晓冉;李佳,
本文编号:2256371
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2256371.html