当前位置:主页 > 管理论文 > 城建管理论文 >

脉冲型地震下考虑支座位移需求的减震—隔震混合控制体系抗震性能研究

发布时间:2018-11-28 08:13
【摘要】:在过去的二十年里,隔震技术已经被证明是一种非常有效的抗震技术,在民用建筑、桥梁以及工业建筑中得到了广泛的应用。基础隔震技术是通过在结构底部安装具有较低抗侧刚度的隔震支座,使结构基本自振频率远离地震动的高频成分,从而减小上部结构地震作用的一种被动抗震技术。由此可见,对于能量集中分布在中、高频段的远场地震动,基础隔震技术非常有效。但是,对于包含长周期、大幅值以及高能量输入频率成分的脉冲型地震动,基础隔震技术的有效性则值得商榷。现有的研究已经表明,隔震支座在脉冲型地震作用下可能会发生屈曲、拉裂等破坏,影响上部结构的安全。为此,本文围绕脉冲型地震作用下,隔震支座的位移需求和分别采用调谐质量阻尼器和粘滞阻尼器对隔震支座位移进行控制的减震-隔震混合控制体系的动力响应、能量耗散机理以及抗震性能展开了以下几方面的研究工作: (1)对既有关于近断层区域划分以及脉冲型地震动特征的研究工作进行了总结,在此基础上建立了脉冲型地震动的选取准则,利用该选波准则从PEER中选取了本文后续工作所需的脉冲型地震记录,通过对脉冲型地震记录的功率谱进行分析,研究了其频谱特征;对现有普通地震动的合成方法以及速度脉冲的数学模型进行了总结,在此基础上通过对目标响应谱进行拟合得到了脉冲型地震动的高频分量,利用He-Agrawal模型合成速度脉冲分量,将两者进行叠加得到包含高频分量和低频分量的合成脉冲型地震动,通过对合成地震动的功率谱进行分析,探讨了该合成方法的可行性。 (2)对脉冲型地震作用下隔震支座非弹性位移需求的估算方法进行了研究。建立了隔震结构弹性位移需求谱和等强度位移需求谱的相关方程,运用MATLAB进行编程和求解得到了隔震结构的弹性位移需求谱、等强度位移需求谱和等强度位移比谱;对弹性位移需求谱和等强度位移比谱的谱形特征进行了分析,利用曲线拟合方法得到了弹性位移需求谱和等强度位移比谱的计算公式,通过与真实地震记录的弹性位移需求谱和等强度位移比谱进行对比,探讨了本文所建立计算公式的合理性;最后,将弹性位移需求谱和等强度位移比谱的计算公式进行联立,得到了等强度位移需求谱的计算公式,利用该公式可以快速地估算出隔震支座在脉冲型地震作用下的非弹性位移需求。 (3)分别研究了调谐质量阻尼器和粘滞阻尼器的安装对隔震支座以及上部结构地震响应的影响。建立了LRB结构、TMD-LRB体系以及Dsup-LRB体系的非线性运动方程,运用MATLAB编程求解了结构在脉冲型地震作用下的动力响应,通过与LRB结构进行对比,分别研究了调谐质量阻尼器和粘滞阻尼器的安装对隔震支座位移响应和上部结构层间位移响应和加速度响应的影响;进一步研究了速度脉冲周期、支座屈服力、屈服后与屈服前的刚度比、调谐质量比、调谐频率比以及由粘滞阻尼器产生的附加阻尼比对隔震支座和上部结构位移响应的影响;最后,建立了LRB结构、TMD-LRB体系以及Dsup-LRB体系的能量平衡方程,运用MATLAB编程求解了结构的能量响应,通过对地震动输入能、结构阻尼耗能以及隔震支座滞回耗能的对比分析,从能量耗散的角度研究了调谐质量阻尼器和粘滞阻尼器的安装能够削弱结构地震响应的原因。 (4)研究了粘滞阻尼器的安装对上部结构和隔震支座抗震性能的影响。对LRB结构和Dsup-LRB体系进行非线性增量动力分析,得到了上部结构和隔震支座的IDA曲线,对单条IDA曲线和多条IDA曲线的特征进行了分析,经过统计得到上部结构和隔震支座的16%、50%和84%分位IDA曲线,从统计的角度对两者的抗震性能进行了分析;进一步对LRB结构和Dsup-LRB体系进行了地震易损性分析,得到了上部结构和隔震支座在不同极限状态下的地震易损性曲线,从概率的角度对两者的抗震性能进行了评估。 (5)以串联隔震体系振动台试验为基础,对隔震支座的位移需求进行了动力试验研究。通过对不同强度地震作用下隔震支座的位移响应进行对比分析,研究了地震动强度对隔震支座位移响应的影响:通过与远场地震进行对比,研究了脉冲型地震动对隔震支座位移响应的影响;通过与LRB结构进行对比,研究了粘滞阻尼器的安装对隔震支座位移需求的影响,为数值分析结果提供了试验论据。
[Abstract]:Over the past two decades, the seismic technology has been proved to be a very effective anti-seismic technique, and has been widely used in civil buildings, bridges and industrial buildings. The basic shock-proof technology is a passive anti-seismic technique which can reduce the seismic effect of the upper structure by installing a shock-proof support with lower anti-lateral rigidity at the bottom of the structure, so that the structure is basically self-vibration frequency away from the ground vibration high-frequency component. It can be seen that the basic seismic isolation technique is very effective in the middle and high frequency range of the energy concentration distribution. However, for the pulse-type ground motion, which contains the long period, the amplitude value and the high energy input frequency component, the effectiveness of the basic seismic isolation technique is discussed. The existing research has shown that the shock-proof support can be damaged by buckling and cracking under the action of a pulse-type earthquake, and the safety of the upper structure is affected. In this paper, the dynamic response of the shock-shock hybrid control system, which is controlled by the displacement of the seismic bearing, the displacement demand of the seismic bearing and the displacement of the shock-proof support by the tuned mass damper and the viscous damper, is used in this paper. The energy dissipation mechanism and the anti-seismic performance are studied in the following aspects: (1) The research work on the classification of the near-fault region and the characteristics of the pulse-type ground motion is summarized, and the selection of the pulse-type ground motion is established. In this paper, the pulse-type seismic records required for the follow-up work of the paper are selected from the PEER by using the selected wave criterion, and the power spectrum of the pulse-type seismic record is analyzed, the spectral characteristics of the pulse-type seismic records are studied, and the synthesis method and the mathematical model of the speed pulse of the conventional vibration are combined. The high-frequency component of the pulse-type ground motion is obtained by fitting the target response spectrum, and the high-frequency component of the high-frequency component and the low-frequency component are combined to obtain a composite pulse-type earthquake with high-frequency components and low-frequency components by using the He-Aggrawal model to synthesize the velocity pulse component. In this paper, the power spectrum of the synthetic ground is analyzed, and the feasibility of this method is discussed. (2) The estimation method of the non-elastic displacement demand of the seismic isolation support under the action of the impulse type earthquake In this paper, the correlation equations of the elastic displacement demand spectrum and the isointensity displacement demand spectrum of the shock-proof structure are established, and the elastic displacement demand spectrum, the equal-intensity displacement demand spectrum and the equal-intensity position of the seismic isolation structure are obtained by using the MATLAB to program and solve the problem. The spectral characteristics of the elastic displacement demand spectrum and the isointensity displacement ratio spectrum are analyzed, and the calculation formulas of the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum are obtained by using the curve fitting method, and the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum are obtained through the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum of the real earthquake record. In this paper, the rationality of the calculation formula established in this paper is discussed in this paper. Finally, the calculation formula of the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum is combined, and the isointensity displacement demand spectrum is obtained. The formula can be used to estimate the non-elastic position of the shock-proof support under the action of the pulse-type earthquake. (3) The installation of tuned mass dampers and viscous dampers on the seismic bearing and the upper structural earthquake are studied respectively. The nonlinear motion equation of the LRB structure, the TMD-LRB system and the Dup-LRB system is established, and the dynamic response of the structure under the action of the pulse-type earthquake is solved by using the MATLAB programming. The effects of the installation of the tuned mass damper and the viscous damper on the displacement response and the response of the displacement of the upper structural layer and the response of the acceleration are studied. The ratio of the rate pulse period, the bearing yield force, the yield and the stiffness ratio before yielding is further studied. The influence of the tuning mass ratio, the tuning frequency ratio and the additional damping ratio generated by the viscous damper on the displacement response of the spacer and the upper structure is discussed. Finally, the energy balance equation of the LRB structure, the TMD-LRB system and the Dup-LRB system is established, and the structure is solved by using MATLAB. In response to the energy dissipation, the structure earthquake can be weakened by comparing the input energy of the ground, the energy dissipation of the structure, and the hysteretic energy dissipation of the spacer. The reason for the response. (4) The installation of the viscous damper on the upper structure and the spacer support The nonlinear incremental dynamic analysis of the LRB structure and the Dup-LRB system is carried out, and the IDA curves of the upper structure and the shock-proof support are obtained, and the characteristics of the single IDA curve and the multiple IDA curves are analyzed, and the 16%, 50% and 84% of the upper structure and the shock-barrier support are obtained through statistics. The seismic performance of both the LRB structure and the Dup-LRB system is analyzed, and the upper structure and the shock-proof support are obtained in different limit states. The Seismic Vulnerability Curve and the Anti-seismic of the Two from the Perspective of Probability The performance is evaluated. (5) The displacement demand of the seismic isolation support is based on the vibration table test of the series seismic isolation system. In this paper, the dynamic test is carried out. The influence of the ground vibration intensity on the displacement response of the seismic bearing is studied by comparing the displacement response of the seismic bearing with different strength. The influence of the mounting of the viscous damper on the displacement demand of the spacer is studied by comparing with the LRB structure, and the numerical analysis is given.
【学位授予单位】:兰州理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TU352.11

【参考文献】

相关期刊论文 前10条

1 江辉;慎丹;倪永军;朱f^;杨庆山;;近断层地震地面运动峰值衰减规律研究[J];北京交通大学学报;2011年04期

2 郭恩;周锡元;彭凌云;赵作周;;近断层地震动记录中速度大脉冲及其影响范围[J];北京工业大学学报;2012年02期

3 杨迪雄,李刚,程耿东;近断层脉冲型地震动作用下隔震结构地震反应分析[J];地震工程与工程振动;2005年02期

4 刘启方;袁一凡;金星;丁海平;;近断层地震动的基本特征[J];地震工程与工程振动;2006年01期

5 李明;谢礼立;翟长海;杨永强;;近断层地震动区域的划分[J];地震工程与工程振动;2009年05期

6 杨迪雄;王伟;;近断层地震动的频谱周期参数和非平稳特征分析[J];地震工程与工程振动;2009年05期

7 汪梦甫;汪帜辉;刘飞飞;;增量动力弹塑性分析方法的改进及其应用[J];地震工程与工程振动;2012年01期

8 李新乐;窦慧娟;王丰;;近断层长周期地震动前向性效应对峰值影响研究[J];大连民族学院学报;2012年03期

9 王海云;谢礼立;;近断层地震动模拟现状[J];地球科学进展;2008年10期

10 徐龙军;谢礼立;;集集地震近断层地震动频谱特性[J];地震学报;2005年06期



本文编号:2362314

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2362314.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d1d93***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com