梯度饱和土的固结及波散射问题
[Abstract]:The consolidation theory of gradient saturated soil and the scattering theory of elastic wave in gradient saturated soil are one of the most important research topics in the field of water conservancy and hydropower engineering and geotechnical engineering. Consolidation theory has important applications in foundation settlement and calculation of foundation bearing limit, and elastic wave scattering has a good application background in non-destructive testing, seismic engineering and so on. In this paper, the consolidation and elastic wave scattering of gradient saturated soil are systematically studied by using the boundary element method, aiming at the shortcomings of the existing researches on the consolidation and elastic wave scattering of gradient saturated soil. The main contents are as follows: the first chapter reviews the research status in detail. Based on the analysis of the present situation of the mechanical properties of the new materials, the concept and performance of the gradient saturated soil are given, and the necessity of the study on the consolidation of the gradient saturated soil is explained according to the summary of the present research situation of the classical saturated soil consolidation theory. Based on the review of the literature on elastic wave scattering, the research method of elastic wave scattering in gradient saturated soil is determined, and the numerical analysis method is summarized, which shows that the boundary element method is the most effective method for solving the consolidation and elastic wave scattering of gradient saturated soil. Finally, the main contents of the thesis are given. The second chapter is based on the traditional saturated porous media theory, based on the Biot theory, according to the seepage theory, elastic mechanics knowledge, under the basic assumptions, The basic equations for controlling consolidation and elastic wave scattering in gradient saturated soil are derived in detail. The difference between these basic equations and classical saturated porous media is that some material parameters vary with the position coordinates. In chapter 3, the consolidation problem of gradient saturated soil is studied. Firstly, the consolidation problem of gradient saturated sphere under constant concentric load on the surface is studied by means of integral variation and differential equation numerical method. Secondly, using the method of separating variables and orthogonal function, the consolidation problem of gradient saturated soil layer under constant load is studied under the condition of water permeation on both sides and impermeability on the surface of the upper surface. Finally, the constant boundary element method is used. The consolidation of gradient saturated soil under two boundary conditions under dynamic loading is studied. In chapter 4, the scattering of SH waves at defects in orthotropic gradient saturated soil is studied. Firstly, the scattering of SH waves by arbitrary cracks in gradient saturated soil strips is studied by using the constant boundary element method. The formulas for calculating the displacement of incident and scattered waves on the crack surface are given. Secondly, the scattering of SH wave by elliptical cavity in gradient saturated soil strip is studied by using the linear boundary element method. The displacement calculation method of incident wave field and scattering wave field on elliptic boundary is given. In the fifth chapter, the empirical formulas for predicting and calculating foundation settlement and their calculation ideas are given. Then, according to the time relationship of observed settlement of residential buildings, three empirical formulas are used to fit the data, and the prediction and estimation formulas are given. Compare the advantages and disadvantages of various empirical formulas. Chapter 6 summarizes and analyzes the main contents of this paper, and looks forward to the future work. The innovations of this paper are as follows: 1. Through the combination of saturated porous materials and functionally gradient materials, the concept of non-uniform gradient saturated soil is introduced, and the consolidation and elastic wave scattering are studied. 2. The Green function in the gradient saturated soil is derived strictly by mathematical method, and the numerical examples and analysis are given by using the constant boundary element and the line boundary element. 3. The relation between double integral and curve integral is given by the simplest method, and the derivation process of boundary integral equation is given by Green formula.
【学位授予单位】:宁夏大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TU43
【参考文献】
相关期刊论文 前10条
1 王希诚,葛增杰,李飞宇;土体固结分析的异步并行计算[J];大连理工大学学报;2000年05期
2 门福录;;波在橗水孔隙弹性介尛中的传播[J];地球物理学报;1965年02期
3 刘俊俏;李星;;压电压磁材料中周期裂纹对SH波的散射[J];工程数学学报;2011年04期
4 赵维炳;钱家欢;;设置砂井的软粘土地基动力固结[J];港口工程;1985年03期
5 刘俊俏;李星;;SH波在正交各向异性功能梯度无限长条中心裂缝处的散射[J];固体力学学报;2006年04期
6 刘俊俏;段惠琴;李星;;SH波在压电材料条中垂直界面裂纹处的散射[J];固体力学学报;2010年04期
7 ;DYNAMIC ANALYSIS OF A BURIED RIGID ELLIPTIC CYLINDER PARTIALLY DEBONDED FROM SURROUNDING MATRIX UNDER SHEAR WAVES[J];Acta Mechanica Solida Sinica;1995年01期
8 苗福生;刘俊俏;李星;;热机荷载下含梯度涂层的弹性条中裂纹问题(英文)[J];Journal of Southeast University(English Edition);2012年04期
9 余志顽,,赵维炳,顾吉;粘弹-粘塑性软基排水预压的三维有限元分析[J];河海大学学报;1995年05期
10 门福录;;波在饱水孔隙粘弹介质中的传播[J];科学通报;1966年03期
相关博士学位论文 前3条
1 周跃亭;功能梯度材料中界面裂纹对弹性波的散射及热断裂问题[D];上海交通大学;2007年
2 吴瑞潜;饱和土一维热固结解析理论研究[D];浙江大学;2008年
3 单振东;饱和与非饱和多孔介质一维问题精确解[D];浙江大学;2012年
本文编号:2386316
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2386316.html