新型混合连肢墙节点抗震性能研究
[Abstract]:The steel connecting beam is used instead of the original reinforced concrete connecting beam to form the mixed multi-limb wall system. The steel-connected beam is designed according to the energy dissipation beam section of eccentrically braced steel frame. It combines the advantages of strong deformation ability of steel beam and large lateral stiffness of concrete shear wall, so it is more suitable for high seismic fortification area. Its unique superiority is highly valued by researchers. The connection joint between steel beam and shear wall is very important to ensure the seismic performance of hybrid wall system. However, previous studies mainly focused on the direct-buried joints in which steel beams were directly inserted into shear walls. Our group proposed that appropriate steel columns should be installed in the edge members of reinforced concrete shear walls. A new type of joint for full welding of steel-connected beams and columns. Through experimental research, finite element analysis and theoretical analysis, the failure mechanism of this new type of joint under cyclic load is studied, and the corresponding seismic design method is put forward. In order to study the seismic behavior of this new type of joints, the low-cycle repeated loading tests of six full-scale joint specimens were carried out, namely, "strong joints with strong joints" and "strong beams with weak joints". The failure mechanism, hysteretic performance, load-carrying capacity, energy dissipation capacity, deformation composition and the influence of the parameters of the specimens were analyzed. The test results show that the hysteretic curve of the strong joint specimen is spindle-shaped and has good seismic performance, which is similar to the performance of the eccentrically braced steel frame with energy dissipation beam, and can solve the problem of reinforced concrete connecting beam. The ductility of small span ratio connecting beam is insufficient; The failure mode of weak joint specimens is shear failure, which is similar to that of steel beam-steel reinforced concrete column joints, and the ductility and energy dissipation capacity are superior to those of ordinary concrete joints. Based on the experimental results, the finite element simulation of specimens under low cyclic loading is carried out by using the finite element software ABAQUS. The appropriate constitutive model of tensile and compressive damage is selected and the bond-slip between steel and concrete is considered. The calculated results are in good agreement with the experimental results. On this basis, the parameter analysis of the weak joint model is carried out. The height and thickness of steel web plate, the diameter of stirrups, the diameter of horizontally distributed bars, the axial compression ratio, the strength of concrete in the joint domain are studied. Whether or not to set the surface bearing plate and other parameters on the hysteretic performance of the joint. Based on the results of test and finite element analysis, the mechanical mechanism of the new type of composite wall joints is analyzed, and the boundary conditions of the steel reinforced concrete (SRC) dark columns are simplified by mechanics. In this paper, the complex new hybrid wall joints are transformed into the steel beam and steel reinforced concrete column joints which have been studied. A model for calculating the horizontal shear force of the joint is proposed, and the formula for calculating the horizontal shear force in the core area of the joint is obtained. With reference to the existing research results, the formulas for calculating the shear capacity of joints are given. The results of test and finite element analysis are compared with those of the formulas, and the results are in good agreement. The ultimate bearing capacity formula of shear yield steel connecting beam and bending yield steel connecting beam is put forward, and two joint specimens are designed in combination with the ultimate bearing capacity formula of the core zone of joint. The accuracy of the calculation formula is proved by finite element calculation.
【学位授予单位】:西安建筑科技大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TU352.11
【相似文献】
相关期刊论文 前10条
1 陈景毅;连梁的结构设计[J];中外建筑;2004年03期
2 王结进,周汉志,卢伟锋,王占峰,王震国;一种连梁超筋的处理[J];平顶山工学院学报;2004年02期
3 刘迪,王全凤;框架-剪力墙结构中连梁问题的探讨[J];基建优化;2004年05期
4 周林聪;陈龙珠;陈晓宝;;连梁破坏模式与安全状态的简化判断[J];工业建筑;2006年03期
5 莫东;;浅议高层建筑结构设计中连梁超筋的解决办法[J];广西城镇建设;2007年11期
6 李珊;程建立;蒋悦;;浅谈高层建筑结构中的连梁[J];才智;2010年14期
7 胥玉祥;朱玉华;赵昕;李学平;;双连梁受力性能研究[J];结构工程师;2010年03期
8 徐民彦;;高层建筑抗震设计时剪力墙连梁的作用[J];科技信息;2011年11期
9 钟亚红;;高层建筑结构设计中的连梁超筋问题[J];科技与企业;2012年05期
10 吕西林;陈云;蒋欢军;;新型可更换连梁研究进展[J];地震工程与工程振动;2013年01期
相关会议论文 前10条
1 胡欣;乔清朝;;简议连梁超限处理[A];土木建筑学术文库(第14卷)[C];2010年
2 陈云涛;;双连梁的等效分析[A];第三届全国建筑结构技术交流会论文集[C];2011年
3 朱勇;周云;;钢板与钢筋混凝土连梁的组合协同作用机理分析[A];中国钢协钢-混凝土组合结构分会第十一次年会论文集[C];2007年
4 姜忻良;宣波;;剪力墙结构中双连梁的转角刚度等效方法[A];城市地下空间综合开发技术交流会论文集[C];2013年
5 郭秉山;王海飞;闫月梅;张成林;;剪力墙连梁在循环荷载下的受力性能研究[A];第二届全国工程结构抗震加固改造技术交流会论文集[C];2010年
6 胥玉祥;朱玉华;赵昕;;新型内嵌铅芯耗能连梁[A];第九届全国现代结构工程学术研讨会论文集[C];2009年
7 范重;李波;范学伟;;超高层建筑剪力墙短连梁有效配筋形式研究[A];建筑结构(2009·增刊)——第二届全国建筑结构技术交流会论文集[C];2009年
8 吴晋辉;吴伟田;;延性连梁设计浅议[A];土木建筑学术文库(第14卷)[C];2010年
9 李杰臣;苏园园;;高层剪力墙中连梁的设计[A];河南省土木建筑学会2010年学术大会论文集[C];2010年
10 张海洋;李璐;;关于剪力墙结构中连梁常见问题的探讨[A];土木建筑学术文库(第9卷)[C];2008年
相关重要报纸文章 前1条
1 ;市十二届人大三次会议副秘书长名单[N];湛江日报;2008年
相关博士学位论文 前4条
1 宋安良;新型混合连肢墙节点抗震性能研究[D];西安建筑科技大学;2014年
2 韩小雷;带刚性连梁的双肢剪力墙及其结构控制性能的研究[D];华南理工大学;1991年
3 车佳玲;FRC对角斜筋连梁及联肢剪力墙抗震性能与设计方法研究[D];西安建筑科技大学;2013年
4 杨忠;超高韧性水泥基复合材料构件受剪性能试验研究[D];合肥工业大学;2014年
相关硕士学位论文 前10条
1 王春晖;半通缝连梁抗震性能数值模拟分析[D];青岛理工大学;2015年
2 王利强;新型耗能连梁抗震性能研究[D];哈尔滨工业大学;2015年
3 施唯;钢筋混凝土连梁的破坏机制与损伤控制研究[D];中国地震局工程力学研究所;2015年
4 钟海牛;桁架式钢骨混凝土连梁抗震性能试验研究[D];广西大学;2015年
5 夏承柱;新型配筋形式小跨高比连梁抗震性能与抗剪承载力研究[D];中国矿业大学;2015年
6 胡京亚;新型可更换耗能连梁设计方法研究[D];广州大学;2015年
7 孙亚;带可更换钢连梁的混合联肢剪力墙抗震性能研究[D];清华大学;2015年
8 贾俊杰;混凝土剪力墙连梁基于延性的抗震性能研究[D];郑州大学;2016年
9 韩鑫;高层剪力墙结构中防屈曲约束支撑连梁不同布置对抗震性能影响的研究[D];长安大学;2016年
10 李一康;含钢率对改进焊接箍筋钢板—混凝土组合连梁的抗震性能研究[D];华北理工大学;2016年
本文编号:2388945
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2388945.html