FRP加固钢梁界面剥离损伤的瑞利波检测技术数值研究
[Abstract]:With the rapid development of space long-span steel structure in recent years, more and more steel structures strengthened by FRP (Fiber Reinforced Plastics) are strengthened because of the insufficient bearing capacity of the original structure. Nondestructive testing of interfacial peeling damage of long-span FRP strengthened steel structure is carried out. It is of great significance for the maintenance and maintenance of steel structures strengthened with FRP to ensure the safety and reliability of large and important steel structure buildings. In this paper, how to detect the interfacial peeling damage length by using the variation law of the velocity dispersion curve of the Rayleigh wave group is studied. When the Rayleigh wave propagates on the surface of the steel beam strengthened by FRP, the dispersion characteristics of the Rayleigh wave will change, and the dispersion curve of the Rayleigh wave velocity reflects the dispersion characteristics of the Rayleigh wave. In order to study how to use Rayleigh wave dispersion information for damage identification, the finite element model of FRP and steel two-layer medium is established, and the generation mechanism and propagation characteristics of Rayleigh wave on the surface of steel beam strengthened by FRP are studied. The Rayleigh wave is identified from the wave field snapshot, the influence parameters of the wave field numerical simulation are determined, the interfacial peeling damage of the steel beam strengthened by FRP is simulated, and the cross-correlation analysis method for solving the velocity dispersion curve of the Rayleigh wave group is introduced. The accuracy of the finite element simulation is verified by the comparison between the Rayleigh wave velocity calculated by the theoretical formula and the Rayleigh wave velocity simulated by the finite element method. In this paper, the two-dimensional finite element simulation of steel beams strengthened with full-span FRP is carried out, the effects of peeling damage and cracks on the propagation of Rayleigh waves are analyzed, and the corresponding velocity dispersion curves of Rayleigh wave groups are calculated forward. The relationship between the interfacial peeling damage and the velocity dispersion curve of the Rayleigh wave group is found out. When the interface peeling damage occurs, the amplitude of the Rayleigh wave group velocity between the same detection point pairs decreases in some frequency bands, and the velocity dispersion curve of the Rayleigh wave group tends to shift downward in the corresponding frequency band, and the longer the interface peeling damage is, the larger the interface peeling damage length is. The larger the downward translation of the curve is, the greater the downward translation of the curve is. The difference of velocity dispersion curve between different detection point pairs in the same structure is related to the interfacial peeling damage. In this paper, Euclidean distance and angular separation degree are used to measure the difference between dispersion curves. It is considered that when the angular separation degree of the two curves is more than 0.9, the data collected in the detection process are effective. The corresponding Euclidean distance can be used as an index for interfacial peeling damage detection. Based on this, a method for detecting interfacial peeling damage of steel beams strengthened with FRP is proposed in this paper. In this paper, the normalized average Euclidean distance is used as the detection index of interfacial peeling damage. The three-dimensional finite element model of steel beams strengthened with non-full-span FRP is established, and the damage detection method based on the model is used to simulate the interfacial peeling damage of steel beams strengthened by FRP. The three influencing factors of the minimum recoverable size and the comparative advantages of the detection methods in this paper are analyzed.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU393.3;TU317
【相似文献】
相关期刊论文 前10条
1 ;用瑞利波波速法测定地基土动力特性[J];勘察技术资料;1974年05期
2 董中华,孙军;瑞利波探测技术及其应用[J];青岛大学学报(自然科学版);1996年03期
3 刘拓;乔文孝;车小花;段文星;赵玉宏;;利用流-固交界面上的伪瑞利波幅度进行液位检测的实验测量[J];声学学报;2014年05期
4 杨天春,易伟建,何继善,吕绍林,Giovanni Cascante;瑞利波泄漏模式的模拟研究[J];湖南大学学报(自然科学版);2005年04期
5 夏唐代;陈云敏;吴世明;;利用瑞利波速度弥散特性反演地基参数[J];振动工程学报;1991年04期
6 杨光,杨吉生;水平液固界面上瑞利波辐射的有限模型[J];地震工程与工程振动;1997年03期
7 柴华友,汪江波,周一勤,陈星烨;瑞利波分析方法及应用进展[J];岩石力学与工程学报;2002年01期
8 徐晨鸣;周艳红;;瑞利波检测技术在高速公路改扩建工程中的应用[J];交通标准化;2013年07期
9 柴华友;韦昌富;;刚度缓变介质中瑞利波特性[J];岩土力学;2009年09期
10 陈龙珠,黄秋菊,夏唐代;饱和地基中瑞利波的弥散特性[J];岩土工程学报;1998年03期
相关会议论文 前10条
1 孟照辉;段道景;林旭光;应晓建;;探地雷达与瑞利波在地基检测中的综合应用[A];2000年中国地球物理学会年刊——中国地球物理学会第十六届年会论文集[C];2000年
2 金士杰;安志武;王小民;廉国选;;表面裂缝处瑞利波散射的动态光弹研究[A];中国声学学会第十届青年学术会议论文集[C];2013年
3 刘贵林;闫永发;;瞬态瑞利波探测技术在煤矿地质勘探中的应用[A];第四届全国煤炭工业生产一线青年技术创新文集[C];2009年
4 郭海鸥;;瑞利波探伤在航空修理中的应用[A];陕西省第十一届无损检测年会论文集[C];2008年
5 鲁来玉;张碧星;;考虑高阶模式的瑞利波反演研究[A];中国声学学会2003年青年学术会议[CYCA'03]论文集[C];2003年
6 师芳芳;张碧星;;瑞利波在界面上的反射和透射[A];中国声学学会2006年全国声学学术会议论文集[C];2006年
7 赵兆;王勇;张仲礼;;瑞利波超前探技术在跟踪长距离掘进巷道中的应用研究[A];陕西地球物理文集(九)[C];2010年
8 鲁来玉;张碧星;汪承灏;;瑞利波高阶模式的实验和反演研究[A];中国声学学会2006年全国声学学术会议论文集[C];2006年
9 鲁来玉;张碧星;汪承灏;;层状介质中瑞利波的时频分析[A];中国地球物理学会第二十届年会论文集[C];2004年
10 胡文祥;钱梦
本文编号:2488316
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2488316.html