基于机械阻抗方法的钢—混凝土组合梁局部损伤检测研究
发布时间:2021-03-18 19:22
在工程应用中需要了解负载状态下结构的行为。有助于优化设计并预防服役和运行期间可能出现的异常,退化和局部损伤。局部损伤是一个严重的问题,可能导致结构灾难性的故障和运行事故。因此,结构健康监测(SHM)近年来受到了相当大的关注。然而,由于土木工程结构的多相性和不均匀性,传统的检测方法(如视觉检测,涡流和超声波技术)非常繁琐,昂贵,甚至不可靠。像压电陶瓷这种智能材料具有主动传感,低成本,快速响应,不同形状的可用性以及实施简单等优点,近年来,作为一种新的工具使得结构健康监测(SHM)得到了发展。本研究集中在基于压电(PZT)片的压电阻抗(EMI)法。EMI法运用于损伤检测具有高频驱动特征和非模型基础的优点,因此它可以检测到结构损伤的发生并且对小的局部损伤敏感。考虑到这一点,本研究的目的是开发一种基于压电阻抗的新技术来检测两个对称点加载的钢-混凝土组合梁的局部损伤。因此,提出一种新的思路即将PZT片粘贴在钢-混凝土组合梁中的剪力钉上,根据PZT导纳的实部,分析损伤距离s和/或损伤深度d对PZT片的影响。尤其是采用ANSYS软件对荷载作用下的钢-混凝土组合梁进行数值模拟,以了解其基本行为并评估损伤...
【文章来源】:天津大学天津市 211工程院校 985工程院校 教育部直属院校
【文章页数】:104 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 Motivation and Background
1.2 Objectives and Scope
1.3 Organization of thesis
CHAPTER 2 LITERATURE REVIEW
2.1 Introduction
2.2 Structural Health Monitoring (SHM) of civil infrastructures
2.3 Conventional techniques of Structural Health Monitoring (SHM)
2.3.1 Vibration-based SHM techniques
2.3.2 Static response-based techniques
2.3.3 Dynamic response-based techniques
2.3.4 Local SHM techniques
2.4 Techniques using smart systems/structures concepts for SHM
2.4.1 Smart structure
2.4.2 Smart materials
2.4.3 Components of Smart System
2.4.4 Potential applications of smart systems in civil engineering
2.5 Structural Health Monitoring (SHM) with Piezoelectricity and Piezoelectric materials
2.5.1 History of piezoelectricity
2.5.2 Constitutive piezoelectric relations
2.5.2.1 Piezoelectric directions and coefficients
2.5.2.2 Basic piezoelectric equations
2.5.3 Type of piezoelectric materials
2.5.3.1 Piezoceramics
2.5.3.2 Piezopolymers
2.6 Damages detection methods based on piezoelectric material
2.6.1 Development of Lamb wave propagation method
2.6.2 Development of Electromechanical Impedance (EMI) method
CHAPTER 3 ELECTROMECHANICAL IMPEDANCE (EMI) METHOD
3.1 Introduction
3.2 Principle and formula derivation
3.3 PZT-Structure Interaction
3.4 Parameters of the Electromechanical Impedance Method
3.4.1 Frequency Ranges
3.4.2 Sensing Region
3.4.3 Damage Assessment
3.5 Electromechanical Admittance measurement
3.5.1 Measurement using impedance analyzer
3.5.2 Calculation using ANSYS software
3.6 Advantages of EMI Technique
3.7 Limitations of EMI Technique
CHAPTER 4 NUMERICAL SIMULATION
4.1 Introduction
4.2 Typical description and detail models of steel-concrete composite beam
4.2.1 Steel beam
4.2.2 Concrete slab
4.2.2.1 Effective cross section
4.2.2.2 Depth of concrete slab hc
4.2.3 Shear studs
4.2.3.1 Shear force to be transferred by connectors
4.2.3.2 Resistance of studs PRk
4.2.3.3 Number of shear stud connectors
4.2.3.4 Spacing of shear studs in the beam section
4.2.3.5 Spacing of end studs
4.3 Finite Element analysis
4.3.1 General modeling of steel-concrete composite beam
4.3.1.1 Element type
4.3.1.2 Real constants
4.3.1.3 Element Properties
4.3.1.4 Modeling of the beam
4.3.1.5 Meshing of beam
4.3.1.6 Shear key modeling
4.3.1.7 Loads and boundary condition
4.3.2 Static analysis of the steel-concrete composite beam
4.4 Harmonic analysis
4.4.1 Calculation procedures
4.4.2 FE model of steel-concrete composite beam
4.4.3 FE model of PZT patch
CHAPTER 5 RESULTS AND DISCUSSIONS
5.1 Introduction
5.2 Influence of damage distance s or/and damage depth d to the PZT patches basedon the real part of PZT admittance
5.2.1 Case 1: Damage in concrete slab
5.2.2 Case 2: Shear Stud and concrete slab debonding
5.2.3 Case 3: Steel beam and concrete slab debonding
5.3 Qualitative analysis of the impact of law under different conditions by RMSD
5.3.1 Case 1: Damage in concrete slab
5.3.2 Case 2: Shear Stud and concrete slab debonding
5.3.3 Case 3: Steel beam and concrete slab debonding
CHAPTER 6 CONCLUSION AND RECOMMENDATIONS
6.1 Summary of research work
6.2 Conclusion
6.3 Recommendations for further research
REFERENCES
ACKNOWLEDGEMENTS
【参考文献】:
期刊论文
[1]Piezoelectric Actuator/Sensor Wave Propagation Based Nondestructive Active Monitoring Method of Concrete Structures[J]. 朱劲松. Journal of Wuhan University of Technology(Materials Science Edition). 2011(03)
[2]钢-混凝土组合结构体系研究新进展[J]. 聂建国,陶慕轩,黄远,田淑明,陈戈. 建筑结构学报. 2010(06)
本文编号:3088803
【文章来源】:天津大学天津市 211工程院校 985工程院校 教育部直属院校
【文章页数】:104 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 Motivation and Background
1.2 Objectives and Scope
1.3 Organization of thesis
CHAPTER 2 LITERATURE REVIEW
2.1 Introduction
2.2 Structural Health Monitoring (SHM) of civil infrastructures
2.3 Conventional techniques of Structural Health Monitoring (SHM)
2.3.1 Vibration-based SHM techniques
2.3.2 Static response-based techniques
2.3.3 Dynamic response-based techniques
2.3.4 Local SHM techniques
2.4 Techniques using smart systems/structures concepts for SHM
2.4.1 Smart structure
2.4.2 Smart materials
2.4.3 Components of Smart System
2.4.4 Potential applications of smart systems in civil engineering
2.5 Structural Health Monitoring (SHM) with Piezoelectricity and Piezoelectric materials
2.5.1 History of piezoelectricity
2.5.2 Constitutive piezoelectric relations
2.5.2.1 Piezoelectric directions and coefficients
2.5.2.2 Basic piezoelectric equations
2.5.3 Type of piezoelectric materials
2.5.3.1 Piezoceramics
2.5.3.2 Piezopolymers
2.6 Damages detection methods based on piezoelectric material
2.6.1 Development of Lamb wave propagation method
2.6.2 Development of Electromechanical Impedance (EMI) method
CHAPTER 3 ELECTROMECHANICAL IMPEDANCE (EMI) METHOD
3.1 Introduction
3.2 Principle and formula derivation
3.3 PZT-Structure Interaction
3.4 Parameters of the Electromechanical Impedance Method
3.4.1 Frequency Ranges
3.4.2 Sensing Region
3.4.3 Damage Assessment
3.5 Electromechanical Admittance measurement
3.5.1 Measurement using impedance analyzer
3.5.2 Calculation using ANSYS software
3.6 Advantages of EMI Technique
3.7 Limitations of EMI Technique
CHAPTER 4 NUMERICAL SIMULATION
4.1 Introduction
4.2 Typical description and detail models of steel-concrete composite beam
4.2.1 Steel beam
4.2.2 Concrete slab
4.2.2.1 Effective cross section
4.2.2.2 Depth of concrete slab hc
4.2.3 Shear studs
4.2.3.1 Shear force to be transferred by connectors
4.2.3.2 Resistance of studs PRk
4.2.3.3 Number of shear stud connectors
4.2.3.4 Spacing of shear studs in the beam section
4.2.3.5 Spacing of end studs
4.3 Finite Element analysis
4.3.1 General modeling of steel-concrete composite beam
4.3.1.1 Element type
4.3.1.2 Real constants
4.3.1.3 Element Properties
4.3.1.4 Modeling of the beam
4.3.1.5 Meshing of beam
4.3.1.6 Shear key modeling
4.3.1.7 Loads and boundary condition
4.3.2 Static analysis of the steel-concrete composite beam
4.4 Harmonic analysis
4.4.1 Calculation procedures
4.4.2 FE model of steel-concrete composite beam
4.4.3 FE model of PZT patch
CHAPTER 5 RESULTS AND DISCUSSIONS
5.1 Introduction
5.2 Influence of damage distance s or/and damage depth d to the PZT patches basedon the real part of PZT admittance
5.2.1 Case 1: Damage in concrete slab
5.2.2 Case 2: Shear Stud and concrete slab debonding
5.2.3 Case 3: Steel beam and concrete slab debonding
5.3 Qualitative analysis of the impact of law under different conditions by RMSD
5.3.1 Case 1: Damage in concrete slab
5.3.2 Case 2: Shear Stud and concrete slab debonding
5.3.3 Case 3: Steel beam and concrete slab debonding
CHAPTER 6 CONCLUSION AND RECOMMENDATIONS
6.1 Summary of research work
6.2 Conclusion
6.3 Recommendations for further research
REFERENCES
ACKNOWLEDGEMENTS
【参考文献】:
期刊论文
[1]Piezoelectric Actuator/Sensor Wave Propagation Based Nondestructive Active Monitoring Method of Concrete Structures[J]. 朱劲松. Journal of Wuhan University of Technology(Materials Science Edition). 2011(03)
[2]钢-混凝土组合结构体系研究新进展[J]. 聂建国,陶慕轩,黄远,田淑明,陈戈. 建筑结构学报. 2010(06)
本文编号:3088803
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/3088803.html