改进的Wolf一步预测的网络异常流量检测
发布时间:2018-03-03 12:48
本文选题:网络流量 切入点:混沌 出处:《科技通报》2014年02期 论文类型:期刊论文
【摘要】:在网络预测算法中传统的预测几乎都没有考虑流量的自相似性和高斯性,仅仅利用最大Lyapunov指数进行计算机网络流量的混沌性检验,对网络流量的预测也仅仅是以计算得到的最大Lyapunov指数为前提,算法精度受限。提出一种改进的Wolf一步预测算法,对网络流量通过自相似的FGN(FGN,fractional gaussian noise)过程处理,得到替代原网络流量的新的序列,新的替代流量序列具有自相似性,从而进行预测。仿真结果准确检验了网络流量的混沌性,预测结果表明,改进的预测算法在略有缩短最大预报时间下,精度却高很多,预测的误差小于3%的点比例比原传统算法提高了20%以上。
[Abstract]:In the traditional network prediction algorithms, the self-similarity of traffic and Gao Si are hardly taken into account, and the chaos of computer network traffic is only tested by using the largest Lyapunov exponent. The prediction of network traffic is only based on the calculation of the largest Lyapunov exponent, and the accuracy of the algorithm is limited. An improved Wolf one-step prediction algorithm is proposed to process network traffic through the self-similar FGNN FGNN gaussian noiseal process. A new sequence is obtained to replace the original network traffic, and the new alternative traffic sequence has self-similarity, so it can be predicted. The simulation results verify the chaos of the network traffic accurately, and the prediction results show that, The precision of the improved prediction algorithm is much higher than that of the traditional algorithm, and the prediction error is less than 3%. The accuracy of the improved prediction algorithm is 20% higher than that of the traditional algorithm.
【作者单位】: 首都经济贸易大学信息工程系;
【分类号】:TP393.06
【参考文献】
相关期刊论文 前1条
1 刘雁;慕德俊;;最大Lyapunov指数实现局域网流量的预测[J];西北工业大学学报;2009年02期
【共引文献】
相关期刊论文 前4条
1 朱晨鸣;李新;李国华;白文乐;;噪声对信号混沌特性的影响研究与分析[J];电路与系统学报;2011年05期
2 冯兴杰;潘文欣;卢楠;;基于小波包的RBF神经网络网络流量混沌预测[J];计算机工程与设计;2012年05期
3 欧阳e,
本文编号:1561103
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/1561103.html