基于邻居推荐策略的CDN-P2P流媒体传输系统设计与实现
发布时间:2018-05-06 06:07
本文选题:CDN + P2P ; 参考:《北京邮电大学》2014年硕士论文
【摘要】:近些年随着互联网和流媒体技术的发展,流媒体服务逐渐成为互联网的重要应用,并且趋向于向大规模、高质量的方向发展。大规模流媒体服务也成为近年来的研究热点。 相关研究表明,结合CDN和P2P技术的优点,将它们应用到流媒体传输系统中能够显著提高流媒体传输的性能。本文重点研究了以下三方面的内容: 第一,针对系统中的网络节点具有高度的自治性、动态性的特点,为了使系统中的服务请求节点能够获得更稳定流畅的流媒体传输服务,我们在系统中加入了基于网络距离和稳定性的邻居推荐功能。它能够根据节点的网络距离划分网络域,并帮助节点从网络域中选择稳定性较好的节点作为邻居节点。可以使稳定性高的节点充分匹配,提高了服务的质量。 第二,随着系统中节点数量和资源数量增多,我们在系统中增加了基于用户邻域的推荐功能,帮助系统中的用户找到他们可能喜欢的资源。但仅仅依靠中心服务器的协同过滤,计算量大、计算时间长。因此我们在原有的推荐算法上进行了改进,形成了基于兴趣子网的分布式协同过滤推荐算法。该算法将大量的相似性计算任务分配给节点来完成,节点通过自发的相似性计算,组成兴趣子网。然后由中心服务器完成推荐。降低了推荐过程的计算量,又不失推荐准确性。 第三,系统中的节点缓存有限,节点只有在缓存了服务请求节点请求的媒体段时,才能向该服务请求节点提供传输服务。显然,能够提供传输服务的节点越多,服务节点的压力就会越小。针对这一问题,我们在系统中加入了基于资源热度和分段优先级的FIFO缓冲区替换策略,该策略根据节目热度和用户观看节目时的习惯来管理缓冲区,优先保留优先级较高的视频块,提高了能够提供服务的节点的个数,减小了服务节点的压力和启动延时。
[Abstract]:In recent years, with the development of Internet and streaming media technology, streaming media service has gradually become an important application of the Internet, and tends to the direction of large scale and high quality. Large-scale streaming media service has also become a research hotspot in recent years. Related studies show that the application of CDN and P2P technology to streaming media transmission system can significantly improve the performance of streaming media transmission. This paper focuses on the following three aspects: We add neighbor recommendation function based on network distance and stability in the system. It can divide the network domain according to the network distance of the node, and help the node to select the stable node as the neighbor node from the network domain. The nodes with high stability can be fully matched and the quality of service can be improved. Secondly as the number of nodes and resources increases in the system we add the recommendation function based on the user neighborhood to help the users to find the resources they may like. However, it only depends on the collaborative filtering of the central server, which results in a large amount of computation and a long calculation time. Therefore, we improve the original recommendation algorithm and form a distributed collaborative filtering recommendation algorithm based on interest subnet. The algorithm allocates a large number of similarity calculation tasks to nodes, which form subnets of interest through spontaneous similarity calculation. The recommendation is then completed by the central server. The calculation amount of recommendation process is reduced, and the accuracy of recommendation is not lost. Thirdly, the node cache in the system is limited. Only when the media segment requested by the service request node is cached, can the node provide the transmission service to the service requesting node. Obviously, the more nodes that can provide transport services, the less pressure on service nodes. In order to solve this problem, we add a FIFO buffer replacement strategy based on resource heat and segment priority, which manages the buffer according to the program heat and user's habit of watching the program. The priority is to retain the high priority video blocks, which can increase the number of nodes that can provide services and reduce the pressure and startup delay of service nodes.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.02;TP391.3
【参考文献】
相关期刊论文 前10条
1 杨戈;廖建新;朱晓民;樊秀梅;;流媒体分发系统关键技术综述[J];电子学报;2009年01期
2 盛明;李捷;王鸿;;基于CDN路由的轻量级P2P节点选择方案[J];河南大学学报(自然科学版);2011年01期
3 龚海刚;刘明;毛莺池;陆桑璐;谢立;;P2P流媒体关键技术的研究进展[J];计算机研究与发展;2005年12期
4 李聪;梁昌勇;马丽;;基于领域最近邻的协同过滤推荐算法[J];计算机研究与发展;2008年09期
5 刘瑜;朱光喜;尹浩;刘雪宁;;内容分发网发展综述[J];计算机科学;2009年02期
6 王文波;范训礼;房鼎益;;基于缓存偏移量的P2P流媒体调度策略[J];计算机工程;2009年23期
7 尹浩;林闯;文浩;陈治佳;吴大鹏;;大规模流媒体应用中关键技术的研究[J];计算机学报;2008年05期
8 杨传栋,余镇危,王行刚;结合CDN与P2P技术的混合流媒体系统研究[J];计算机应用;2005年09期
9 臧运港;陈光喜;;基于P2P和CDN的混合流媒体分发模型及分析[J];计算机应用研究;2010年06期
10 姜涛;钟亦平;吕智慧;;基于PeerCast的P2P流媒体多点播放缓存管理设计[J];计算机应用与软件;2009年06期
,本文编号:1851103
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/1851103.html