基于微博评论的虚假消息检测模型
本文选题:微博 + 评论 ; 参考:《计算机仿真》2016年01期
【摘要】:微博虚假消息的判别是微博研究中的难点问题。为了实现快速准确识别,从源微博的评论角度出发定义了三个不同特征:支持性、置信度、内容相关性。利用所选三个特征作为输入,构建SVM分类算法判别消息真伪。以抓取的新浪微博上的真实数据集作为实验对象,利用提出的模型进行了实验并与人工神经网络对比,在虚假微博的识别中初步取得了较好的结果,可以有效的识别虚假消息。
[Abstract]:The identification of Weibo false message is a difficult problem in the study of Weibo. In order to identify the source Weibo quickly and accurately, three different features are defined from the point of view of the source Weibo: support, confidence, and content correlation. Using the selected three features as input, a SVM classification algorithm is constructed to identify the authenticity of messages. The real data set on Sina Weibo is taken as the experimental object. The proposed model is used to experiment and compare with artificial neural network. The result of false Weibo recognition is obtained and the false message can be recognized effectively.
【作者单位】: 北京工商大学;
【基金】:教育部人文社会科学研究青年基金项目(13YJC860006)
【分类号】:TP393.092;TP391.1
【相似文献】
相关期刊论文 前10条
1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期
2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期
3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期
4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期
5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期
6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期
7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期
8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期
9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期
10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期
相关会议论文 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:1908599
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/1908599.html