基于浮动利率的PaaS平台计量计费系统设计与实现
发布时间:2018-06-09 01:27
本文选题:云计算 + 平台即服务 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:随着云计算时代的到来,各大服务运营商纷纷推出了基于容器技术的轻量级Paa S(平台即服务)平台,为人们提供高效便捷的业务应用部署服务。在现有的云计算服务模式下,计量计费系统是实现云端资源经济效益的必备手段,此外如何在云环境下保证计量计费系统运行的稳定性、准确性与实时性以及如何通过计量计费提高云服务的质量已经成为云计算领域亟待解决的问题。本文提出了一种动态的计量计费模型,可依据集群当前资源稀缺度动态调整资源价格。资源的稀缺程度在一定程度上反映了当前的供求关系,因此通过动态调整稀缺资源的价格可以平衡资源的供需关系。在动态调价的基础上,本文设计并实现了基于浮动利率的Paa S平台计量计费系统,并在日任务量千万级的条件下对任务实例的资源用量进行分析计算,给出用户账单。首先,本文介绍了云计算计量计费的相关理论,包括进程级虚拟化技术Docker、流式计算技术、分布式存储以及相关平台的计费策略等。其次,本文设计并实现了基于浮动利率的Paa S平台计量计费系统。该系统分为计量监测模块、流式计费模块、计费策略管理模块、账单管理模块以及展示模块。其中计量监测模块包括指标形式化描述、指标采集器、指标准确性评估以及流式发布等功能,计量是计费的基础,准确可靠的计量系统可为计费提供稳定的数据。流式计费模块由实时计算和离线计算两部分组成,在账单处理上采用实时计算的方法保证账单的实时性;在浮动利率的生成上采用线性回归方法分析浮动利率,并在离线计算中完成。计费策略管理模块为整个计费过程提供价格数据,包括对计费项目配置、影响因子调节以及操作记录等功能。账单管理模块维护所有用户账单并提供账单存取接口。展示模块为用户和管理员提供可视化的操作界面。最后,本文从指标采集效率、计费效率以及资源消耗等方面对基于浮动利率的Paa S平台计量计费系统进行了测试,测试结果验证了系统的可用性和高效性,满足系统设计要求。
[Abstract]:With the arrival of cloud computing era, various service operators have launched a lightweight Paa S-based platform based on container technology, which provides efficient and convenient service for business application deployment. In the current cloud computing service mode, metering and billing system is an essential means to realize the economic benefits of cloud resources. In addition, how to ensure the stability of metering and billing system in cloud environment, Accuracy, real-time and how to improve cloud service quality through metering and billing have become the urgent problems in cloud computing field. This paper presents a dynamic metering and charging model, which can dynamically adjust the resource price according to the current resource scarcity of the cluster. The scarcity degree of resources reflects the current relationship between supply and demand to a certain extent, so dynamic adjustment of the price of scarce resources can balance the supply and demand relationship of resources. On the basis of dynamic price adjustment, this paper designs and implements the Paa S platform metering and charging system based on floating interest rate, and analyzes and calculates the resource consumption of the task instance under the condition of thousands of daily tasks, and gives the user bill. Firstly, this paper introduces the related theories of cloud computing metering and billing, including process level virtualization technology Docker, streaming computing technology, distributed storage and accounting policies of related platforms and so on. Secondly, this paper designs and implements a Paa S platform metering and billing system based on floating interest rate. The system is divided into measurement monitoring module, flow billing module, billing strategy management module, bill management module and display module. Measurement and monitoring module includes formal description of indicators, index collector, index accuracy evaluation and flow publishing functions. Measurement is the basis of accounting. Accurate and reliable measurement system can provide stable data for accounting. The flow charging module is composed of real-time calculation and off-line calculation. The real-time calculation method is used to ensure the real time of the bill, and the linear regression method is used to analyze the floating rate in the generation of floating interest rate. And completed in the offline calculation. The charging policy management module provides the pricing data for the whole charging process, including the functions of configuring the charging items, adjusting the influence factors and recording the operation. The billing management module maintains all user bills and provides billing access interfaces. The presentation module provides a visual interface for users and administrators. Finally, this paper tests the Paa S platform metering and charging system based on floating interest rate from the aspects of index collection efficiency, accounting efficiency and resource consumption. The test results verify the availability and efficiency of the system, and meet the system design requirements.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP393.09
【参考文献】
相关期刊论文 前10条
1 张晋芳;王清心;丁家满;刘彦君;黄心;;一种云计算环境下大数据动态迁移策略[J];计算机工程;2016年05期
2 单莘;祝智岗;张龙;付长冬;魏书晓;;基于流处理技术的云计算平台监控方案的设计与实现[J];计算机应用与软件;2016年04期
3 段春梅;;云计算分布式缓存技术在海量数据处理平台中的应用[J];智能计算机与应用;2016年01期
4 伍阳;;基于Docker的虚拟化技术研究[J];信息技术;2016年01期
5 苏宇;沈苏彬;;一种云计算资源使用的采集记账方案[J];计算机技术与发展;2015年11期
6 马亿e,
本文编号:1998170
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/1998170.html