基于随机森林分类的微博机器用户识别研究
本文选题:机器用户 + 微博 ; 参考:《北京大学学报(自然科学版)》2015年02期
【摘要】:针对网络上机器用户大量散布谣言,发布虚假信息,误导网民舆论,严重影响网络环境的问题,以微博中的机器用户为研究对象,结合其自动化程度高、伪装能力强、信息发布有针对性的特点,从行为模式、微博内容、用户关系和发布平台4个维度分析机器用户的特征指标,利用信息熵、内容重复率等8个指标构建微博用户的特征向量,通过随机森林算法设计微博中机器用户的识别模型。最后,在真实的新浪微博数据集上进行验证,结果表明本模型识别机器用户的准确度达到96.7%,可以有效地区分微博中的机器用户和普通用户。
[Abstract]:Aiming at the problem that machine users spread rumors, publish false information, mislead the public opinion of Internet users and seriously affect the network environment on the network, take the machine users in Weibo as the research object, combine with its high degree of automation and strong camouflage ability. This paper analyzes the characteristic indexes of machine users from the four dimensions of behavior pattern, Weibo content, user relationship and publishing platform, and constructs the feature vectors of Weibo users by using information entropy and content repetition rate. The identification model of machine users in Weibo is designed by stochastic forest algorithm. Finally, verified on the real Sina Weibo data set, the results show that the accuracy of the model for identifying machine users is up to 96.7g, which can effectively distinguish machine users from ordinary users in Weibo.
【作者单位】: 中南财经政法大学信息与安全工程学院;武汉大学信息管理学院;
【基金】:国家自然科学基金(71203164) 国家社会科学基金(14BXW033)资助
【分类号】:TP393.092
【相似文献】
相关期刊论文 前10条
1 刘足华;熊惠霖;;基于随机森林的目标检测与定位[J];计算机工程;2012年13期
2 董师师;黄哲学;;随机森林理论浅析[J];集成技术;2013年01期
3 王象刚;;基于K均值随机森林快速算法及入侵检测中的应用[J];科技通报;2013年08期
4 陈姝;彭小宁;;基于粒子滤波和在线随机森林分类的目标跟踪[J];江苏大学学报(自然科学版);2014年02期
5 罗知林;陈挺;蔡皖东;;一个基于随机森林的微博转发预测算法[J];计算机科学;2014年04期
6 王丽婷;丁晓青;方驰;;基于随机森林的人脸关键点精确定位方法[J];清华大学学报(自然科学版);2009年04期
7 李建更;高志坤;;随机森林针对小样本数据类权重设置[J];计算机工程与应用;2009年26期
8 张建;武东英;刘慧生;;基于随机森林的流量分类方法[J];信息工程大学学报;2012年05期
9 吴华芹;;基于训练集划分的随机森林算法[J];科技通报;2013年10期
10 张华伟;王明文;甘丽新;;基于随机森林的文本分类模型研究[J];山东大学学报(理学版);2006年03期
相关会议论文 前8条
1 谢程利;王金桥;卢汉清;;核森林及其在目标检测中的应用[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
2 武晓岩;方庆伟;;基因表达数据分析的随机森林方法及算法改进[A];黑龙江省第十次统计科学讨论会论文集[C];2008年
3 张天龙;梁龙;王康;李华;;随机森林结合激光诱导击穿光谱技术用于的钢铁分类[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年
4 相玉红;张卓勇;;组蛋白去乙酰化酶抑制剂的构效关系研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
5 张涛;李贞子;武晓岩;李康;;随机森林回归分析方法及在代谢组学中的应用[A];2011年中国卫生统计学年会会议论文集[C];2011年
6 冯飞翔;冯辅周;江鹏程;刘菁;刘建敏;;随机森林和k-近邻法在某型坦克变速箱状态识别中的应用[A];第八届全国转子动力学学术讨论会论文集[C];2008年
7 曹东升;许青松;梁逸曾;陈宪;李洪东;;组合树的集合体和后向消除策略去分类P-糖蛋白化合物[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年
8 张旺;范丽s,
本文编号:2062421
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2062421.html