小水电远程监控系统网络入侵检测研究
发布时间:2018-06-25 06:43
本文选题:小水电 + 远程监控系统 ; 参考:《浙江工业大学》2014年硕士论文
【摘要】:小水电是一种清洁、安全的可再生能源,对于环境保护有重要意义,是国家能源发展的重点战略方向。目前,电站间的通信逐渐开始互联化,远程监控系统开始运用于各种类型的水电站,随之而来的网络安全问题也日趋增多。入侵检测系统是一种主动发现网络异常的安全防护技术,对于保障计算机网络安全十分重要。 本文在分析入侵检测技术研究现状的基础上,研究基于机器学习技术的入侵检测方法及系统构建,选择了适合小水电环境下的检测方法,具有重要的研究价值。主要工作如下: (1)提出小水电环境下机器学习算法对入侵行为识别效果的评估指标,能够综合评估算法的准确率、召回率、误差率、建模时间、样本复杂度以及算法本身的复杂度。通过六种常用的机器学习算法进行了验证,实验详细表述了算法评估的每一个过程,最后得到最佳算法,逻辑回归。 (2)提出了一种基于高斯异常检测和逻辑回归模型的轻量级入侵检测算法,首先使用训练的高斯异常检测模型对流量数据进行过滤,分别得到正常流量、异常流量和待定流量,然后使用逻辑回归算法对待定流量再进行最后判断。实验结果显示,该算法仅使用描述网络流量行为的2个特征,即可对将近一半的网络流量进行有效的判断,节省了检测时间以及硬件计算资源。 (3)基于上述成果,开发了小水电远程监控系统网络入侵检测系统,包括了系统架构设计、数据库设计和软件开发环境设计,为小水电远程监控系统网络入侵检测提供了有效的解决方案。
[Abstract]:Small hydropower is a kind of clean and safe renewable energy, which has important significance for environmental protection and is the key strategic direction of national energy development. At present, the communication between power stations is becoming interconnected gradually, remote monitoring system has been applied to all kinds of hydropower stations, and the network security problems are also increasing day by day. Intrusion detection system (IDS) is a kind of security protection technology which can actively detect network anomalies. It is very important to ensure the security of computer network. On the basis of analyzing the present situation of intrusion detection technology, this paper studies the intrusion detection method and system construction based on machine learning technology, and selects the detection method suitable for small hydropower environment, which has important research value. The main work is as follows: (1) the evaluation index of machine learning algorithm for intrusion recognition in small hydropower environment is proposed, which can comprehensively evaluate the accuracy, recall rate, error rate and modeling time of the algorithm. The complexity of the sample and the complexity of the algorithm itself. Six commonly used machine learning algorithms are used to verify the algorithm. The experiment describes each process of algorithm evaluation in detail. Finally, the best algorithm is obtained. (2) A lightweight intrusion detection algorithm based on Gao Si anomaly detection and logical regression model is proposed. Firstly, the trained Gao Si anomaly detection model is used to filter the traffic data to obtain the normal traffic. The abnormal flow and undetermined flow are determined by the logic regression algorithm. The experimental results show that the proposed algorithm can effectively judge nearly half of the network traffic using only two features describing network traffic behavior, and saves detection time and hardware computing resources. (3) based on the above results, The network intrusion detection system of small hydropower remote monitoring system is developed, including system architecture design, database design and software development environment design, which provides an effective solution for small hydropower remote monitoring system network intrusion detection.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.08
【参考文献】
相关期刊论文 前9条
1 李永红,李晓斌,刘臣亮,方荃,张新军,周保红;电力系统网络安全隔离的设计和实现[J];水电自动化与大坝监测;2005年03期
2 谢凯;赵转社;;湖南电网水调自动化系统安全隔离的设计与实现[J];水电自动化与大坝监测;2008年04期
3 高卓,罗毅,涂光瑜,吴彤;变电站的计算机网络安全分析[J];电力系统自动化;2002年01期
4 廖建容;段斌;谭步学;孙璐;;基于口令的变电站数据与通信安全认证[J];电力系统自动化;2007年10期
5 孙中伟;马亚宁;王一蓉;霍司天;徐光年;;基于EPON的配电网自动化通信系统及其安全机制[J];电力系统自动化;2010年08期
6 童晓阳;;基于可信计算的广域保护与变电站通信安全防御策略[J];电力系统自动化;2011年20期
7 徐茹枝;王宇飞;;面向电力信息网络的安全态势感知研究[J];电网技术;2013年01期
8 杨叶平;袁宏;董泽亮;;黄河小浪底集控系统网络安全隔离设计与实施[J];水电能源科学;2007年05期
9 乔延河;卢志良;傅闯;章璐;;基于现场总线和以太网的水电厂闸门控制系统[J];水力发电学报;2006年03期
相关博士学位论文 前1条
1 余臻;电力系统远程监控的若干问题研究[D];厦门大学;2008年
,本文编号:2065025
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2065025.html