基于Apriori算法的证据分析系统设计
[Abstract]:With the development of computer technology and network technology, their role in people's life has gradually increased and has become a necessary part of life. Although the rapid development of the network provides great shortcuts and conveniences for human beings, the appearance of network viruses, hacker invading and network offense is also given to people's property and personal letter. Interest security has brought very big negative effects and has become an urgent problem to be solved. The problem of network security has been paid more and more attention. As an important part of network security, the role of network forensics has been self-evident, and evidence analysis is the most important step in this process. So this article is devoted to the research of evidence analysis and the fusion of association rules mining algorithm to obtain evidence, and design and implement an evidence analysis system based on Apriori algorithm. Finally, in the process of improvement, the test results are satisfactory by simulation attack. The following is a brief summary of the contents of this paper: (1) Referring to the research situation of many frontiers at home and abroad, combining with its own situation, doing relevant investigation, carrying out the requirement analysis to the system, making a positioning for the research direction and learning related technologies, including Wireshark packet technology, MD5 data integrity verification technology, Webservice technology, etc. (2) learning a large number of data mining association rules. After knowledge, it has a certain understanding of association analysis, and puts forward the corresponding improvement to the traditional association rule method Apriori algorithm. The improved algorithm can effectively alleviate the shortcomings of the traditional Apriori algorithm and analyze the data quickly. (3) the basic framework and internal detailed work of the system are designed on the basis of the requirement analysis. Firstly, the system is briefly designed. In this paper, the evidence analysis system based on Apriori algorithm is divided into two subsystems, the client and the server. The client is responsible for collecting data and the server is responsible for the analysis of the data. In particular, the client is logged in, data collection, data storage, data upload, and downloading reports. The user login module is responsible for the user's identity according to the user name and password entered by the user. The data acquisition module is responsible for collecting data and providing data support for the analysis of evidence. The main design is to collect the network data packets and download the records of the users, and the data storage module is responsible for collecting data. The data collected by the module is stored in the database, which not only facilitates the later data analysis, but also preserves the evidence. The data upload module uploads the data to the Webservice platform to facilitate the direct call of other users; the download report module is to generate the evidence report on the server side, and the user can download the evidence report on the client side and feed back the result feedback. The server side is composed of three functional modules, which are data view, data analysis, and report generation. The data view module is mainly responsible for checking the unprocessed data collected by the client. The data analysis module mainly uses various methods to process the original data and obtain the necessary evidence. This article mainly uses the improved Apri The ori algorithm analyses the data collected by the client and obtains the evidence, such as the detection of flood attack, the analysis of the user's behavior of downloading the file, etc. the generation report module is displayed in the form of report and presented to the user after obtaining the evidence. Finally, the database is designed and the data are designed for the customer and server end respectively. Table, ensure the integrity of data storage; (4) after the completion of the requirements analysis and system design, this paper uses the C/S architecture model and VS2010 as the development software, realizes the functions of the evidence analysis system improved by the Apriori algorithm, introduces the code and displays the system interface. Finally, through testing, the system can be found. Analyze the correlation between data efficiently and accurately, detect attacks and obtain relevant evidence.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;TP393.08
【相似文献】
相关期刊论文 前10条
1 王华;梁华银;;改进的Apriori算法在高校教学管理系统中的应用[J];科技信息(学术研究);2008年34期
2 张玉强;于凤全;金立峰;朱晓飞;;Apriori算法在雷达故障诊断系统中的应用研究[J];电脑知识与技术;2011年07期
3 李阳;朱宗胜;;基于优化Apriori算法的入侵检测系统模型设计[J];计算机安全;2009年11期
4 王冬秀;胡迎春;李辉;;改进的Apriori算法在股票分析中的应用研究[J];科技通报;2013年03期
5 高琰;王台华;郭帆;余敏;;应用非迭代Apriori算法检测分布式拒绝服务攻击[J];计算机应用;2011年06期
6 郑麟;;一种直接生成频繁项集的分治Apriori算法[J];计算机应用与软件;2014年04期
7 陶荣;;基于Apriori算法在学生信息管理系统中的应用与研究[J];计算机光盘软件与应用;2012年21期
8 明勇;;基于数据挖掘的Apriori算法在入侵检测中的应用[J];电脑知识与技术;2005年35期
9 肖桂艳;周满元;;Apriori算法在基于网络入侵检测系统中的应用[J];微计算机信息;2010年06期
10 吴昊;李军国;;一种改进的Apriori算法在交通信息化中的应用[J];信息化纵横;2009年08期
相关会议论文 前7条
1 刘擎;刘云涛;罗翌;;关联规则挖掘Apriori算法在当代名老中医流感医案挖掘中的应用及改进探讨[A];2012中国中西医结合学会急救医学专业委员会学术年会论文集[C];2012年
2 陈波;董鹏;邵勇;;基于Apriori算法及其改进算法综述[A];中国通信学会第五届学术年会论文集[C];2008年
3 张彦;刘伟;;结合超市数据的关联规则Apriori算法浅析[A];2007北京地区高校研究生学术交流会通信与信息技术会议论文集(上册)[C];2008年
4 杨宗波;宗容;常俊;彭广军;;入侵检测中Apriori算法的研究与改进[A];2009年研究生学术交流会通信与信息技术论文集[C];2009年
5 梁昌勇;赵艳霞;;基于RFM分析的银行信用卡客户的行为评分模型——应用自组织映射神经网络SOM和Apriori方法[A];第二届全国信息检索与内容安全学术会议(NCIRCS-2005)论文集[C];2005年
6 高明;盛立;刘希玉;;关联规则挖掘中Apriori算法的一种改进[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(二)[C];2005年
7 万敏;潘笑;宾谊沅;;利用Apriori算法实现WEB的个性化服务[A];2005通信理论与技术新进展——第十届全国青年通信学术会议论文集[C];2005年
相关硕士学位论文 前10条
1 赵宏利;改进的Apriori算法在大学生心理分析中的研究[D];华中师范大学;2015年
2 王丹;基于云计算的关联规则Apriori算法的研究与实现[D];南昌大学;2015年
3 杨财英;Apriori算法及其在学生成绩分析中的应用研究[D];湖南大学;2016年
4 吴博;Apriori算法挖掘技术在WANO人因数据中的应用研究[D];南华大学;2016年
5 侯建辉;基于改进Apriori算法的名老中医治疗高血压病验案挖掘研究[D];山东中医药大学;2016年
6 孙朝晖;基于Apriori算法的证据分析系统设计[D];山东师范大学;2017年
7 王达明;基于云计算与医疗大数据的Apriori算法的优化研究[D];北京邮电大学;2015年
8 杨国英;泛在网下基于Apriori算法的移动群组的位置预测[D];南京邮电大学;2013年
9 丁磊;一种改进的Apriori算法在手机评教系统中的研究[D];华中师范大学;2014年
10 朱惠;关联规则中Apriori算法的研究与改进[D];安徽理工大学;2014年
,本文编号:2128895
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2128895.html