基于使用信息的Web服务质量评价方法
[Abstract]:With the rapid development of the Internet, web service providers develop related Web services in various fields, so there will be a large number of similar Web services for Web service sellers to choose. First, consumers should pay attention to whether Web services satisfy business logic, and second, they should pay attention to QoS, that is, the quality of Web services. However, how to select a service to meet the individual needs of users in the high quality Web service candidate set is one of the topics widely studied by researchers. Based on the in-depth study and analysis of the existing Web service evaluation methods, this paper takes into account the user's personalized requirements for the existing methods, which are only based on the QoS parameters of the Web services. A new Web service evaluation method, WSQEMBUI, is proposed to improve the accuracy of Web service quality evaluation. In the method, the usage data of each service is obtained from the usage log of the Web service mediation server, and then the data is preprocessed, and an evaluation concept tree is established for each service according to the Web service usage information data. Each node of the evaluation concept tree represents an evaluation factor of the service. According to the established concept tree of service quality evaluation, we find a path that is close to the personalized demand factor, that is, the service candidate set. Then calculate the weight of each evaluation factor on the path, and finally give the evaluation results of each service. This paper also proposes an optimization algorithm for quality of service evaluation concept tree which combines the prior knowledge of experts. This optimization algorithm mainly combines the weight of evaluation factors set by experts and the method of machine learning. Finally, the feasibility of the service quality evaluation method is analyzed theoretically. Finally, the experimental results show that the Web service evaluation algorithm for personalized requirements improves the accuracy of Web service quality evaluation to a certain extent.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.09
【参考文献】
相关期刊论文 前10条
1 郑世明;高志年;张璐;吴从晖;韦伟;;基于模糊理论的多属性群决策的web服务评价优化算法[J];微电子学与计算机;2012年11期
2 王尚广;孙其博;杨放春;;Web服务选择中信誉度评估方法[J];软件学报;2012年06期
3 冯建湘;武雪媛;;基于灰色模糊综合评判的Web服务质量评价模型[J];电子商务;2012年02期
4 王永梅;胡学钢;;决策树中ID3算法的研究[J];安徽大学学报(自然科学版);2011年03期
5 古鹏;廉东本;;基于ESB的服务质量评价系统[J];计算机系统应用;2011年04期
6 肖军;胡雷鸣;;基于SOA的Web服务质量评价模型的研究[J];中国管理信息化;2010年13期
7 蒋哲远;韩江洪;王钊;;动态的QoS感知Web服务选择和组合优化模型[J];计算机学报;2009年05期
8 李祯;杨放春;苏森;;基于模糊多属性决策理论的语义Web服务组合算法[J];软件学报;2009年03期
9 张裔智;赵毅;汤小斌;;MD5算法研究[J];计算机科学;2008年07期
10 王国良;梁德群;王新年;王彦春;;基于分箱核密度估计的非参数多模态背景模型[J];计算机应用;2007年05期
相关博士学位论文 前3条
1 孙慧峰;基于协同过滤的个性化Web推荐[D];北京邮电大学;2012年
2 谢琪;基于协同过滤与QoS的个性化Web服务推荐研究[D];重庆大学;2012年
3 毛一梅;基于服务质量的Web服务关键技术研究[D];东华大学;2009年
,本文编号:2169067
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2169067.html