新型否定选择算法的入侵检测模型研究及实现
[Abstract]:With the development of computer and the popularization of network, people pay more and more attention to the problem of network security. However, the early passive defense technology can only detect known attacks because of its own limitations, and can not meet the needs of the growing network. As a new security technology, intrusion detection system (IDS) can solve the limitation of traditional passive defense technology. In view of the fact that the immune system and the intrusion detection system are similar to each other to a great extent, that is, they have a series of characteristics, such as autonomy, diversity, adaptability, tolerance and distribution. The principle and mechanism of immune system are applied to intrusion detection system, and the model of intrusion detection system is improved to make it more feasible. The intrusion detection model is realized by a new negative selection algorithm based on deterministic crowding to simulate the maturation mechanism of T cells. It is a autologous / non-autologous detection method in the artificial immune system. The existing negative selection algorithm proposed by Forrest-Perelson et al has some defects, which results in the low detection efficiency of the artificial immune system for non-autologous detection. In this paper, we find that the reason of the low detection efficiency of the negative selection algorithm is that the algorithm needs a large number of detectors to completely cover the dissident space as far as possible, which is not feasible in reality. Therefore, how to balance the number of detectors and maximize the coverage of dissident space is a problem to be solved. In this paper, a new negative selection algorithm based on deterministic congestion is proposed to improve the problems of large search space and low running efficiency in solving the network security problems in the traditional negative selection algorithm. The main work of this paper is to improve the intrusion detection. It is proved that the deterministic congestion based negative selection algorithm can estimate the offset of a more accurate method without affecting its performance, generate a set of fewer detectors and be more efficient in computing power. The experimental results show that the proposed negative selection algorithm based on deterministic congestion has higher detection efficiency and accuracy than the original algorithm.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.08
【相似文献】
相关期刊论文 前10条
1 张楠;李志蜀;张建华;;基于混沌理论的否定选择算法[J];四川大学学报(工程科学版);2006年01期
2 晏义威;张凤斌;杨晓君;张科;;改进的混沌否定选择算法[J];计算机工程;2009年11期
3 张雄美;易昭湘;宋建社;李俊山;;基于矩阵形式的否定选择算法研究[J];电子与信息学报;2010年11期
4 谢婧;印润远;颜禄涵;;改进的否定选择算法在入侵检测中的应用[J];微计算机信息;2012年01期
5 张福勇;齐德昱;胡镜林;;终身学习的否定选择算法[J];沈阳工业大学学报;2012年03期
6 金章赞;廖明宏;肖刚;;否定选择算法综述[J];通信学报;2013年01期
7 王大伟;张凤斌;;区域否定选择算法[J];计算机工程与应用;2008年12期
8 李卓君;;一种改进的否定选择算法[J];信息通信;2012年01期
9 莫秀良;王春东;;基于否定选择算法的木马检测与研究[J];煤炭技术;2013年07期
10 张凤斌;王天博;;实值n维混沌映射否定选择算法[J];计算机研究与发展;2013年07期
相关会议论文 前1条
1 魏春英;刘培玉;;否定选择算法及其改进[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
相关硕士学位论文 前10条
1 史乐;否定选择算法及可视化实现研究[D];南京大学;2015年
2 宋伟;新型否定选择算法的入侵检测模型研究及实现[D];西安电子科技大学;2014年
3 仲巍;新型否定选择算法的研究与应用[D];江苏大学;2008年
4 张建;基于深度学习和信息增益的否定选择算法[D];西安电子科技大学;2012年
5 乔宗杰;基于熵理论的实值否定选择算法研究[D];哈尔滨理工大学;2012年
6 刘岩;基于否定选择算法的异常检测模型研究[D];哈尔滨工程大学;2008年
7 赵红霞;基于新型否定选择算法的计算机病毒检测技术研究[D];太原理工大学;2010年
8 王卫民;基于人工免疫系统的否定选择算法改进相关研究[D];电子科技大学;2008年
9 李海;否定选择算法在IDS中的应用研究[D];电子科技大学;2009年
10 李彬;基于否定选择算法的入侵检测系统[D];太原理工大学;2011年
,本文编号:2193552
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2193552.html