网路通信中漂移数据抗干扰镇定模型分析
发布时间:2018-08-22 10:37
【摘要】:提出一种基于随机决策树以及自适应门限变换的漂移数据抗干扰镇定模型,把随机决策树融入Hoeffding Bounds不等式检测概念漂移数据并过滤其中的干扰因素,通过自适应门限的抗干扰阀值算法,实时跟踪并抑制相关的干扰因素处理,确保网络通信的顺利运行。实验结果说明,该模型的检测准确率、抗噪性、分类精度都优于传统模型,取得了令人满意的效果。
[Abstract]:A disturbance stabilization model of drift data based on random decision tree and adaptive threshold transform is proposed. The random decision tree is incorporated into Hoeffding Bounds inequality to detect the concept drift data and filter the interference factors. In order to ensure the smooth operation of network communication, the adaptive threshold algorithm is used to track and suppress the interference factors in real time. The experimental results show that the detection accuracy, noise resistance and classification accuracy of the model are better than those of the traditional model, and the results are satisfactory.
【作者单位】: 广东轻工职业技术学院计算机工程系;
【基金】:产学研一体化IT服务人才培养基地的建设研究与实践项目(JG201261)
【分类号】:TP393.0
[Abstract]:A disturbance stabilization model of drift data based on random decision tree and adaptive threshold transform is proposed. The random decision tree is incorporated into Hoeffding Bounds inequality to detect the concept drift data and filter the interference factors. In order to ensure the smooth operation of network communication, the adaptive threshold algorithm is used to track and suppress the interference factors in real time. The experimental results show that the detection accuracy, noise resistance and classification accuracy of the model are better than those of the traditional model, and the results are satisfactory.
【作者单位】: 广东轻工职业技术学院计算机工程系;
【基金】:产学研一体化IT服务人才培养基地的建设研究与实践项目(JG201261)
【分类号】:TP393.0
【相似文献】
相关期刊论文 前10条
1 杨大为;;网络加密技术的应用与部署[J];信息安全与通信保密;2007年12期
2 徐海锋;;分布式虚拟环境的网络通信机制研究与应用[J];微计算机信息;2008年03期
3 王永魁,杜建国,茅正冲;UNIX环境下利用socket实现的网络通信程序[J];林业科技情报;1998年03期
4 朱艳琴,李浩,熊玉辉;基于IPX的网络通信安全系统[J];微计算机应用;1998年03期
5 付希杰 ,林溪波;网络通信及其应用[J];艺术科技;2003年01期
6 张南平;葛晶;卢清;;基于Java技术的时钟服务器[J];福建电脑;2008年09期
7 龚涛;;数字证书体系构建与应用[J];湖北经济学院学报(人文社会科学版);2009年06期
8 王启民;;企业网络文件安全管理浅析[J];黑河学刊;2010年07期
9 惠s,
本文编号:2196842
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2196842.html