基于NetFlow的网络流量异常检测技术研究
[Abstract]:With the rapid development of the Internet, the application of the Internet has been widely spread in various fields. Now the network has been everywhere, whether office or entertainment can not do without the network, it has become a part of people's normal work and life. The network security brought by the rapid development of network technology is gradually concerned by us. Various network security problems emerge in endlessly, such as network attack, Trojan horse attack, virus spread and other abnormal traffic can be found everywhere. In the past, the traditional intrusion detection system can not meet the rapid development of the network environment. Based on the above background, this paper has carried on the related research work. In this paper, the collection method of network flow is studied and discussed, and the acquisition method of SNMP and the basic principle of acquisition method of network probe are introduced, and the advantages and disadvantages of these techniques are analyzed. On the basis of the analysis results, the paper makes a detailed and thorough research on the network traffic collection method of NetFlow, and finally chooses the method based on NetFlow. Then, an anomaly detection algorithm based on clustering algorithm is proposed. Based on the analysis of the inherent correlation features of network abnormal traffic, a clustering based anomaly detection algorithm is designed, which is evaluated by similarity and interconnection. The quality of the clustering algorithm is improved by combining these two kinds of high standards. Thirdly, the model of network traffic anomaly detection system is designed and implemented in this paper. The model consists of four parts: data acquisition module, information statistics module, anomaly detection module, alarm module and information presentation module. The data acquisition module firstly detects and processes the data information collected by NetFlow from the router outlet, and then stores the processed data into the database. The information statistics module aggregates the collected information and stores the acquired data to the database and displays the statistical information to the user. The anomaly detection is mainly to detect the flow anomaly and it can detect the host computer with the abnormal flow and locate it. Through the test and simulation of the system, we can discover the abnormal network traffic and detect the abnormal traffic.
【学位授予单位】:河北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.06
【参考文献】
相关期刊论文 前10条
1 吴国东;黄牛;刘巍;;基于NetFlow流量分析的网络蠕虫检测算法[J];船电技术;2010年11期
2 佘锋;王小玲;;基于半监督学习的网络流量分类[J];计算机工程;2009年12期
3 朱士瑞;耿春梅;许晓东;;基于EBP的宏观网络流量异常行为检测[J];计算机工程;2009年13期
4 龙柏炜;阙喜戎;王文东;龚向阳;;IP组播在BitTorrent中的应用研究[J];计算机工程;2010年03期
5 夏正敏;陆松年;李建华;马进;;基于自相似的异常流量自适应检测方法[J];计算机工程;2010年05期
6 李宗林;胡光岷;周汝强;;基于层叠模型的网络流量异常检测方法[J];计算机应用研究;2008年09期
7 崔艳娜;;一种网络流量异常检测模型[J];计算机与现代化;2013年08期
8 鲁旭涛;赵晓东;翟蓓蓓;;IP网络流量控制技术的应用及发展[J];山西电子技术;2012年06期
9 潘乔;裴昌幸;朱畅华;;一种用于异常检测的网络流量抽样方法[J];西安交通大学学报;2008年02期
10 陈宁;陈晓苏;刘辉宇;熊兵;;一种基于小波分析的网络流量异常检测与定位方法[J];小型微型计算机系统;2010年01期
相关博士学位论文 前3条
1 熊伟;基于突变理论及协同学的网络流量异常检测方法研究[D];华中科技大学;2011年
2 周俊临;基于数据挖掘的分布式异常检测[D];电子科技大学;2010年
3 夏正敏;基于分形的网络流量分析及异常检测技术研究[D];上海交通大学;2012年
本文编号:2212246
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2212246.html