社会网络上连续观点动力学演化及在线预测应用
[Abstract]:In recent years, the study of complex social group behaviors and phenomena by natural science has attracted extensive interest and attention. View dynamics uses Agent-based modeling and simulation to study the evolution of individual views from disorder to order in social groups. Opinion Dynamics holds that the formation and evolution of an individual's views are influenced by both his own and other individuals'views around him. It attempts to establish a model to analyze and explain the propagation, evolution and emergence of opinion clusters. Understanding and understanding, designing a better decision-making and discussion process for large-scale population, guiding and controlling the dissemination of public opinion and reaching consensus are of great theoretical and practical significance. Research on the Formation of Free Speaking Views on Social Networks. Interaction among individuals in a group forms a directed scale-free network. Based on the bounded trust hypothesis, a continuous viewpoint dynamics model on directed social networks is proposed to study the effects of speech order and topological structure of social networks on viewpoint formation and evolution. The opinions of the individuals who engrave his opinions are constantly approaching his opinions; using probabilistic order to form fewer opinion clusters, larger maximal clusters, smaller standard deviations, and to achieve a moderate degree of consensus with fewer waiting times than using random order; and with the reduction of scale-free distribution parameters or the increase of trust levels, the two statements The sequential results are better; the gap between the results decreases with the decrease of the network size. 2. Research on the evolution of opinion in turn. In view of the lack of consideration of different weights of individual trust and opinions in the continuous view dynamics model, the finite trust hypothesis is modified by introducing the trust degree between individuals and the similarity between opinions. Limited Impact Hypothesis (LIH) extends the Hegselmann-Krause (HK) model to a weighted view updating model to study the effects of a small number of paranoid and authoritative individuals on opinion formation, evolution and consensus building processes in social groups. Simulation results show that the initial views of the two groups are as close as possible to the midpoint 0.5 or increase in the opinion distribution interval. The influence threshold of paranoid individuals and the trustworthiness of authoritative individuals can make the group form fewer and larger opinion clusters. The simulation results show that under the same initial conditions, authoritative experts are preferred in the round-robin variant and the free-spoken variant, and then the speaker who has the greatest cumulative change of opinion prefers to speak smoothly. The number of viewpoint clusters generated by the order rules is less, and the number of speakers around 15 rounds is the threshold of the change rate of viewpoint clusters. 3. The co-evolution of continuous viewpoints and directed adaptive networks is studied by extending the HK model. The simulation results show that in a static network, the final point of view is affected by the initial characteristics of the network, while in a directed adaptive network, the final point of view is basically affected by the reconnection probability. The increase makes the average degree of the network increase, strengthens the connection between individuals, and makes the result of the adaptive network better than that of the static network. 4. Research on online scoring population prediction based on continuous view dynamics. Whether to join the scoring group or not, if joined, will produce scoring behavior, and then affect the opinions and behaviors of subsequent individuals. A simple continuous view dynamic model is established to predict the number of people scoring online. Individuals'final opinions are mainly influenced by the group's poor-middle-good points, but have little to do with their own initial opinions. The farther the Poisson parameter value deviates from the optimal value (1.25), the lower the prediction accuracy.
【学位授予单位】:国防科学技术大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TP393.02
【相似文献】
相关期刊论文 前10条
1 方子帆;吴建华;何孔德;张屹;陈少平;杜道佳;;索结构碰撞动力学模型及应用研究[J];系统仿真学报;2011年05期
2 程远雄,傅祥志,廖道训;机器人操作器的“数字—符号”实时动力学模型[J];华中理工大学学报;1990年S3期
3 李天复;;情报的作用机制及其动力学模型[J];情报科学;1992年01期
4 孙庆;;间歇腹膜透析尿素氮、肌酐动力学模型[J];四川师范学院学报(自然科学版);1989年04期
5 吉爱国,冯汝鹏,郭伟,张锦江;动力学模型在重型机械手控制中的应用[J];机械工业高教研究;1996年04期
6 荆武兴;高长生;;月球探测器精确相对动力学模型及其应用[J];中国科学:物理学 力学 天文学;2010年04期
7 李长金;关于机器人动力学模型的线性化[J];机器人;1988年05期
8 林凌鹏;林水生;刘培龙;黄乐天;;STDP突触的双输入信号动力学模型研究[J];计算机应用研究;2012年04期
9 茅力非;黄剑;宋文俊;汪秉文;;座椅可移动2轮机器人的建模与仿真[J];华中科技大学学报(自然科学版);2012年07期
10 韩志凤;李荣冰;刘建业;杭义军;;小型四旋翼飞行器动力学模型优化[J];控制工程;2013年S1期
相关会议论文 前10条
1 化存才;;商品调价的动力学模型及其应用[A];第八届全国动力学与控制学术会议论文集[C];2008年
2 蒋大鹏;李俊国;张丹;;不锈钢渣中铬淋溶动力学研究现状[A];第十七届(2013年)全国冶金反应工程学学术会议论文集(下册)[C];2013年
3 杨伟松;汪秉宏;;金融物理动力学模型中的组织结构[A];Complexity Problems--Proceedings of CCAST (World Laboratory) Workshop[C];2001年
4 杨峰;王浣尘;苏懋康;;上海市宏观社会经济动力学模型[A];发展战略与系统工程——第五届系统工程学会年会论文集[C];1986年
5 龚海峰;涂亚庆;宋世远;彭烨;;高压电场作用下油中水滴变形动力学模型[A];中国石化协会、润滑脂专业委员会一届二次全体成员大会暨全国第十五届润滑脂技术交流会论文集[C];2009年
6 吴燕;蒋婷;;人体动力学模型研究(Ⅰ)——人体束缚状态下肢体运动的动力学建模[A];2006年全国体育仪器器材与体育系统仿真学术报告会论文集[C];2006年
7 谈亮;张明敏;;基于全局动力学模型的舰船信号分类研究[A];中国声学学会2002年全国声学学术会议论文集[C];2002年
8 蔡则苏;洪炳熔;;月球车的运动学、动力学模型分析及其仿真研究[A];中国宇航学会深空探测技术专业委员会第一届学术会议论文集[C];2005年
9 曾美容;范孝云;王轶尊;苑文浩;齐飞;李玉阳;;正十四烷热解的实验和动力学模型研究[A];中国化学会第29届学术年会摘要集——第41分会:燃料与燃烧化学[C];2014年
10 张国建;郭连军;;半松散介质下的爆破动力学模型研究[A];第七届全国岩石动力学学术会议文集[C];2000年
相关重要报纸文章 前1条
1 本报记者 刘正午;药物体外动力学模型让新药研究降价[N];医药经济报;2003年
相关博士学位论文 前6条
1 周佳加;基于扁平UUV动力学模型的导航定位与路径跟随控制方法研究[D];哈尔滨工程大学;2012年
2 王霞;时滞效应下的HIV-1病毒动力学模型研究[D];哈尔滨工业大学;2013年
3 刘芳芳;基于柔性鳍波动的水下仿生系统推进性能研究[D];浙江大学;2012年
4 林硕;球活塞式液压泵球塞副摩擦动力学模型与特性研究[D];北京理工大学;2014年
5 苏炯铭;社会网络上连续观点动力学演化及在线预测应用[D];国防科学技术大学;2014年
6 张义军;C4系列烷烃和烯烃的热解实验及动力学模型研究[D];中国科学技术大学;2013年
相关硕士学位论文 前10条
1 李富强;基于动力学模型的机械手控制策略研究[D];哈尔滨工业大学;2009年
2 刘楷;MTO反应催化剂再生动力学模型的研究[D];华东理工大学;2014年
3 陈荣娟;建立大柔性多体结构航天器的动力学模型与面向控制的仿真平台[D];中国人民解放军国防科学技术大学;2002年
4 穆迪;渤海湾生态水质动力学模型研究[D];天津大学;2006年
5 赵朋;串联弹性驱动器动力学模型及其特性分析[D];哈尔滨工程大学;2012年
6 周宇;基于列车动力学模型的Lagrange对偶速度优化研究[D];兰州交通大学;2013年
7 于周建;SBMBR动力学模型研究及其自动化控制[D];青岛理工大学;2010年
8 程成;周期载荷下多股簧的动力学模型及响应特性研究[D];重庆大学;2014年
9 李智;HBV动力学模型的辨识与仿真[D];华中科技大学;2011年
10 闫雪;水中柴油污染物的微生物降解及其动力学研究[D];山东理工大学;2014年
,本文编号:2214620
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2214620.html