当前位置:主页 > 管理论文 > 移动网络论文 >

基于OCTEON多核处理器的网络流量分类技术研究与实现

发布时间:2018-09-19 08:18
【摘要】:随着互联网技术的高速发展,对于网络环境安全的需要也越来越紧迫。网络流量分类技术作为实现网络可控性的基础技术和重要手段,在网络管理、服务质量保障和网络安全等领域正在发挥越来越重要的作用。本文研究了现有的网络流量分类技术,总结了基于端口号匹配、基于特征字段分析、基于传输层行为模式和基于流统计特征的机器学习方法各自的优势和不足。鉴于基于机器学习算法的网络流量分类技术分类精度高、易于扩展等优点,选取随机森林作为网络流量分类方法,并针对传统随机森林的不足提出了改进策略,最后再将改进的随机森林策略实现到OCTEON平台上,设计并实现了基于OCTEON多核处理器的网络流量分类系统。最后,搭建了系统测试环境,对系统进行了有效性测试。主要工作有以下几个方面:1、 在充分理解传统随机森林算法的基础上,根据算法本身存在的单节点模型训练速度慢和不区分基分类器强弱性能差异的不足,从并行性和加权调整两方面入手提出了改进的随机森林策略;2、 对OCTEON本身的硬件特性进行研究,将OCTEON的运行模式、核间同步通信机制和内存分配机制等优秀特性与改机的随机森林策略结合起来,在OCTEON平台上实现改进的随机森林模型;3、 实现了基于OCTEON多核处理器的网络流量分类系统,详细介绍了系统的架构设计,各个功能模块的详细设计和实现,并搭建了系统测试环境,对系统的分类性能进行了测试,验证了系统在流量分类方面的优异性能。
[Abstract]:With the rapid development of Internet technology, the need for network environment security is becoming more and more urgent. As the basic technology and important means to realize network controllability, network traffic classification technology is playing a more and more important role in network management, quality of service assurance and network security. In this paper, the existing network traffic classification techniques are studied, and the advantages and disadvantages of the methods based on port number matching, feature field analysis, transport layer behavior pattern and flow statistics feature based machine learning are summarized. In view of the advantages of network traffic classification based on machine learning algorithm, such as high accuracy and easy to be extended, random forest is selected as network traffic classification method, and an improved strategy is proposed to overcome the shortcomings of traditional stochastic forest. Finally, the improved stochastic forest strategy is implemented on OCTEON platform, and a network traffic classification system based on OCTEON multi-core processor is designed and implemented. Finally, the system testing environment is built, and the effectiveness of the system is tested. The main work includes the following aspects: 1. On the basis of fully understanding the traditional stochastic forest algorithm, according to the shortcomings of the single node model training speed and the difference in the performance of the base classifier, In this paper, an improved stochastic forest strategy is put forward from two aspects of parallelism and weighting adjustment. The hardware characteristics of OCTEON are studied, and the operation mode of OCTEON is put forward. Combining the excellent characteristics of synchronous communication mechanism and memory allocation mechanism between cores with the random forest strategy of the machine, an improved stochastic forest model, named as "random forest model", is implemented on the OCTEON platform, and a network traffic classification system based on OCTEON multi-core processor is implemented. The architecture design of the system and the detailed design and implementation of each functional module are introduced in detail. The system testing environment is built, and the classification performance of the system is tested, which verifies the excellent performance of the system in traffic classification.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP332;TP393.06

【参考文献】

相关期刊论文 前10条

1 张泽鑫;李俊;常向青;;互联网流量的演化研究[J];计算机应用研究;2015年11期

2 寇晓斌;杨琴;王亮亮;;主流处理器体系结构与架构发展现状综述[J];微型机与应用;2014年16期

3 张凯;秦勃;刘其成;;基于GPU-Hadoop的并行计算框架研究与实现[J];计算机应用研究;2014年08期

4 周文刚;陈雷霆;Lubomir Bic;董仕;;基于半监督的网络流量分类识别算法[J];电子测量与仪器学报;2014年04期

5 彭勃;;Network Traffic分类方法比较分析[J];电脑知识与技术;2013年33期

6 李斌;;网络流量分类及其现状研究[J];广西教育;2013年39期

7 赵小欢;夏靖波;连向磊;李巧丽;;基于AdaBoost的组合网络流量分类方法[J];电讯技术;2013年09期

8 彭晓明;郭浩然;庞建民;;多核处理器——技术、趋势和挑战[J];计算机科学;2012年S3期

9 孔蓓蓓;唐学文;汪为汉;;一种多分类器联合的集成网络流量分类方法[J];计算机工程与应用;2013年17期

10 李国平;王勇;陶晓玲;;基于DPI和机器学习的网络流量分类方法[J];桂林电子科技大学学报;2012年02期

相关博士学位论文 前1条

1 王清;集成学习中若干关键问题的研究[D];复旦大学;2011年

相关硕士学位论文 前10条

1 程顺超;基于Calculix的多核并行分析机制研究及平台设计与实现[D];广东工业大学;2015年

2 陈嘉翼;基于小波聚类的网络用户行为分析研究[D];重庆大学;2015年

3 遇炳昕;基于OCTEON多核处理器的网络数据过滤技术研究[D];北京邮电大学;2015年

4 丁瑶;基于DPI和DFI的应用层网络流量监控系统的研究与实现[D];江西理工大学;2014年

5 张莹;基于数据流挖掘的流量识别技术研究[D];曲阜师范大学;2014年

6 刘晓东;基于组合策略的随机森林方法研究[D];大连理工大学;2013年

7 王瑶;结合主动学习的半监督分类算法优化研究[D];大连理工大学;2013年

8 马宪哲;基于集成分类器的数据流分类算法研究[D];东北大学;2012年

9 秦海兵;基于多核平台的程序并行优化研究[D];长安大学;2012年

10 王传磊;基于行为特征的P2P网络流量分类方法研究[D];西安电子科技大学;2012年



本文编号:2249563

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2249563.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6189a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com