基于多标记学习的用户属性流式预测模型研究与实现
[Abstract]:The Internet is transitioning from the era of Web1.0, where users are mainly to get information, to the era of Web2.0, where users are both network information acquirers and network information makers. In order to discover information or service in mass data, user portrait has great function and value. It can provide basic support and direction for personalized search, personalized recommendation, advertising marketing, product strategy and operation direction. User attribute prediction is the core work of user portrait research. Nowadays, the research of user attribute prediction mainly focuses on the construction of a single attribute prediction model, which lacks a more perfect and comprehensive model method for simultaneous prediction of multiple attributes. There is also a lack of data stream mining and conceptual drift processing mechanism in the corresponding fields, which can not realize the dynamic prediction of user attributes, and the existing research on concept drift has limitations, so it needs to be improved and strengthened accordingly. The purpose of this paper is to construct a user attribute flow prediction model with complete system, high efficiency and superior performance. In the aspect of attribute prediction, this paper focuses on the concept of simultaneous prediction of multiple attributes. Based on multi-label learning technology, this paper uses multi-example and multi-label framework (MIML) to study attribute prediction as a generalized multi-label classification. The concept of user object is innovatively constructed and the example is constructed by clustering method. The model can be constructed quickly and accurately and can predict multiple attributes at the same time. Different from the offline prediction model, this paper creatively adds an online flow framework based on data stream mining technology to deal with the online behavior and dynamics generated by users, and focuses on dealing with various conceptual drift problems of data flow. An adaptive concept drift classification algorithm based on prototype learning (Prototype-based) is proposed. Compared with the existing algorithm, SyncPrototype, has a significant improvement in classification performance, response speed and time performance of concept drift. It can deal with and adapt to the concept drift problem of data flow more effectively. It provides powerful support for user attribute flow incremental iteration, so as to realize user attribute dynamic prediction and flow iteration. In this paper, the user attribute flow prediction model based on multi-label learning is used to design and develop the data mining verification module of user attribute authentication system, which can effectively verify the authenticity of personal information filled by Weibo user and measure the reliability of attributes.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP393.0;TP311.13
【相似文献】
相关期刊论文 前9条
1 吴飞;金士尧;胡浩民;;基于用户属性的个性化教学智能辅助研究和设计[J];计算机工程与科学;2012年09期
2 强磊;;3G通用用户属性及其参考结构的研究[J];信息网络;2006年03期
3 叶春晓;符云清;钟将;冯永;;基于属性的委托撤销研究[J];计算机科学;2008年03期
4 余坦;王益民;;一种基于用户属性的搜索算法[J];计算机系统应用;2010年07期
5 唐金鹏;李玲琳;杨路明;;面向用户属性的RBAC模型[J];计算机工程与设计;2010年10期
6 蒋凌志;;基于属性的RBAC系统[J];计算机系统应用;2010年01期
7 叶春晓;符云清;吴中福;;基于角色限制条件的用户-角色指派研究[J];计算机科学;2004年07期
8 ;“小弟弟”盯着你[J];每周电脑报;1997年33期
9 曹玖新;吴江林;石伟;刘波;郑啸;罗军舟;;新浪微博网信息传播分析与预测[J];计算机学报;2014年04期
相关重要报纸文章 前3条
1 马志会;有线无线一体化不等于“统一品牌”[N];网络世界;2009年
2 大竹刚;整合互联网服务[N];中国计算机报;2002年
3 本报记者 别坤;王效辙:扁平化网络更高效[N];计算机世界;2013年
相关博士学位论文 前1条
1 冯珍;产品级再使用研究[D];西安电子科技大学;2005年
相关硕士学位论文 前10条
1 苏静;基于多标记学习的用户属性流式预测模型研究与实现[D];北京邮电大学;2017年
2 景志珍;基于组合赋权的软件服务评价方法的研究与实现[D];昆明理工大学;2015年
3 薛云霞;微博用户属性识别方法研究[D];苏州大学;2015年
4 张晓;社会网络上的用户属性推测方法研究[D];哈尔滨工业大学;2015年
5 秦Z诼,
本文编号:2252257
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2252257.html