一种基于GFKM的集群入侵检测模型
发布时间:2018-10-21 08:05
【摘要】:为了提高入侵系统的检测率和检测速度,论文提出一种基于灰色K均值聚类算法的集群入侵检测模型。利用灰色关联分析理论对原始数据进行预处理,根据ηij=1/n-1∑n2ξij(k)计算相关度,再对原始数据集合进行聚类;最后引入集群技术,将GFKM算法装入集群系统中的每个检测结点形成集群入侵检测模型。最后,通过仿真实验对该模型进行了验证,结果表明,GSFK算法应用于入侵检测模型中出现的误报率为0.31%,漏报率为0.34%,而且该模型呈现出较好的泛化性,应用于网络入侵检测中具有较好的性能。
[Abstract]:In order to improve the detection rate and speed of intrusion detection system, a cluster intrusion detection model based on grey K-means clustering algorithm is proposed in this paper. The grey relation analysis theory is used to preprocess the original data, the correlation degree is calculated according to 畏 ij=1/n-1 鈭,
本文编号:2284484
[Abstract]:In order to improve the detection rate and speed of intrusion detection system, a cluster intrusion detection model based on grey K-means clustering algorithm is proposed in this paper. The grey relation analysis theory is used to preprocess the original data, the correlation degree is calculated according to 畏 ij=1/n-1 鈭,
本文编号:2284484
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2284484.html