基于混沌神经网络的QoS组播路由研究
[Abstract]:Multicast refers to the information transmission mode (, QoS (Quality of Sevice) from one information source point to multiple target nodes called quality of Service (QoS). It is a network security mechanism used to solve the problems of network delay and congestion. It refers to the ability of the network to provide higher priority services. With the emergence of new network services, multicast technology with quality of service (QoS) assurance has become a research hotspot. QoS multicast routing problem, also known as Steiner tree problem, has been proved to be a complete NP problem to minimize the cost of multicast tree. It is very important to select suitable QoS multicast routing algorithm for high quality multicast communication. Chaotic neural network is an effective method to solve this kind of problem. In the past, chaotic neural networks used to solve QoS multicast routing problems focused on improving the performance of the neural network structure, but neglected the improvement of the energy function, and could not strictly constrain the "row" column of the output matrix. In this paper, two new constraints are added to the traditional energy function, and a new energy function is constructed to ensure the validity of the closed path. The improved energy function and the transient chaotic neural network are combined to solve the QoS multicast routing problem. Simulation results show that the improved algorithm can effectively improve the probability and speed of convergence to the optimal solution, and it is also suitable for multicast networks with different complexity. Noise chaotic neural network is obtained by adding exponentially attenuated noise term on the basis of transient chaotic neural network. It has the property of stochastic simulated annealing. In this paper, the improved energy function and the noisy chaotic neural network are combined to solve the QoS multicast routing problem. The simulation results show that the noise chaotic neural network can increase the efficient and optimal solution rates, but the improvement effect of random noise is different for different reasons. At the same time, the initial noise amplitude and the simulated annealing speed of noise must be controlled within a proper range, otherwise the optimization effect will be reduced. The hysteresis noise chaotic neural network can show both stochastic chaotic simulated annealing and hysteresis dynamics, which can help the neural network to jump out of the local extremum. The chaotic neural network based on noise regulation factor can control the random noise level. In this paper, the hysteretic noise chaotic neural network, the hysteretic noise chaotic neural network based on noise regulation factor and the improved energy function are applied to the QoS multicast routing problem. The simulation results show that the optimization results of chaotic neural networks with inverse hysteretic noise are better than those with noisy chaotic neural networks under high noise conditions, but under low noise conditions, the chaotic neural networks with time-delay noise should be used to improve the optimization results. The hysteretic noise chaotic neural network based on noise regulation factor has stronger hysteresis dynamics, regardless of the level of noise. By controlling the noise regulation factor, the optimization results are better than those of hysteretic noise chaotic neural network and noise chaotic neural network.
【学位授予单位】:齐齐哈尔大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP183;TP393.03
【相似文献】
相关期刊论文 前10条
1 王征应,石冰心;基于启发式遗传算法的QoS组播路由问题求解[J];计算机学报;2001年01期
2 顾军华,侯向丹,宋洁,李琳;基于蚂蚁算法的QoS组播路由问题求解[J];河北工业大学学报;2002年04期
3 杨文忠;张振宇;吴向前;;认知无线电网络中QoS组播路由调度[J];计算机工程与科学;2012年10期
4 李美莲;郭李艳;;用混合遗传算法求解QoS组播路由选择方法[J];桂林航天工业高等专科学校学报;2007年03期
5 孙玲玲;贾智平;陈亚南;卢昕;;求解QoS组播路由问题的改进遗传算法[J];计算机工程与应用;2008年06期
6 王军;;遗传算法在QoS组播路由计算方面的应用[J];数字通信世界;2007年12期
7 古明家;宣士斌;廉侃超;李永胜;;求解QoS组播路由的自适应变异二次蚁群算法[J];计算机工程与应用;2010年13期
8 宋乃斌;高随祥;;解决多约束QoS组播路由问题的遗传算法[J];计算机工程;2006年24期
9 张慧档;吕娜;贺昱曜;徐浩翔;;基于混沌神经网络的QoS组播路由算法[J];空军工程大学学报(自然科学版);2008年01期
10 赵秀平;谭冠政;;基于免疫遗传算法的多约束QoS组播路由选择方法[J];计算机应用;2008年03期
相关会议论文 前1条
1 王德毓;甘金颖;王德志;;基于改进遗传算法的多约束QoS组播路由算法[A];2006通信理论与技术新进展——第十一届全国青年通信学术会议论文集[C];2006年
相关博士学位论文 前1条
1 谢黎明;认知无线电网络中QoS组播路由与因果序群组通信的研究[D];武汉大学;2011年
相关硕士学位论文 前3条
1 张庆亮;基于混沌神经网络的QoS组播路由研究[D];齐齐哈尔大学;2016年
2 程遥;基于移动代理的QoS组播路由研究[D];上海交通大学;2007年
3 张宗飞;量子进化算法及其在QoS组播路由和网络入侵检测中的应用[D];浙江工业大学;2009年
,本文编号:2296482
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2296482.html