基于扩散小波的网络流量模型研究及应用
[Abstract]:Traditional network traffic studies focus on the temporal characteristics of data packets observed on a single ISP network. At present, researchers have made progress in the fields of self-similar stochastic process, long-term correlation, heavy-tailed distribution and so on. It has been proved that the application of traditional wavelet transform based multi-scale analysis method to traffic analysis is very effective. However, most of these researches focus on single link or network terminal. Traffic is regarded as a one-dimensional time signal. However, an ISP infrastructure usually consists of 100 or even 1000 links, and the Internet consists of about 20, 000 such ISP. The traffic analysis of one or several links is not enough to explain the global characteristics of network traffic, and the information can be provided by time domain analysis is very limited. Traffic matrix describes the traffic distribution between arbitrary OD (Origin-Destination) pairs in a network for a period of time. It can describe the traffic characteristics of the whole network and has become a crucial parameter in network traffic engineering. The traffic matrix contains the information of irregular topology in the network. Diffusion wavelet can effectively analyze the irregular topology and multi-layer structure in time domain and space domain. In this paper, the multiscale analysis of the flow matrix is carried out by using the diffusion wavelet technique, and the results are applied to the DDoS detection of the global network. The main research contents of this paper are as follows: (1) this paper firstly studies the characteristics of traditional network traffic models and analyzes their advantages and disadvantages. Network traffic characteristics and related metrics. (2) Multiscale analysis of network traffic matrix based on diffusion wavelet technology. By analyzing the different scale coefficients obtained by diffusive wavelet transform of flow matrix, the fourth layer rough coefficient matrix is selected as the main research object and five important characteristic parameters are obtained from it. (3) based on the analysis of the above characteristic parameters, two methods to detect a single node being attacked by DDoS are presented: Hurst exponent detection method and dynamic threshold detection method. The former uses the Hurst index which is the most important index to describe self-similarity in anomaly detection, and the anomaly detection rate reaches 91%. The latter sets the dynamic threshold by combining the characteristics of long correlation and short correlation in network traffic. The abnormal detection rate reaches 93.9 and the false alarm rate is only 10.9. In this paper, the existing detection methods are analyzed and compared. Because the proposed method combines the results of diffusion wavelet analysis, the selected characteristic parameters describe the characteristics of the original flow matrix perfectly, and the efficiency of detecting DDoS anomaly attacks is improved.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP393.06
【相似文献】
相关期刊论文 前10条
1 杨怀雷;周喜龙;孙卫佳;;自相似网络流量模型的分析和研究[J];中国科技信息;2008年15期
2 朱灵波;戴冠中;LIN-SHI Xue-fang;RETIF Jean-Marie;任维娟;;一种基于半马尔可夫网络流量模型的延迟估计算法(英文)[J];系统仿真学报;2008年19期
3 王晖;季振洲;朱素霞;;自相似网络流量模型研究[J];智能计算机与应用;2013年02期
4 谢高岗,闵应骅,张大方,马维民;一个基于实际测试的网络流量模型[J];计算机工程与科学;2001年05期
5 谭晓玲,许勇,张凌,梅成刚,刘兰;基于小波分解的网络流量模型[J];计算机工程与应用;2005年09期
6 田畅,王海,郑少仁;基于用户行为的网络流量模型及自相似性分析[J];通信学报;2000年09期
7 漆华妹;陈志刚;;基于统计网络演算的无线mesh网络流量模型[J];通信学报;2009年07期
8 朱淑鑫;夏欣;刘金定;;一个通用的网络流量模型的设计与实现[J];科学技术与工程;2008年24期
9 时鸿涛;徐鹏民;王海;吕光杰;;基于周期性网络流量模型的校园网流量预测[J];计算机应用与软件;2009年05期
10 陈艳;陈继军;;基于网络流量模型方法的网络流量分析研究[J];华东电力;2010年08期
相关会议论文 前2条
1 吴冰;云晓春;陈海永;;基于统计的网络流量模型及异常流量发现[A];全国网络与信息安全技术研讨会'2005论文集(上册)[C];2005年
2 周汝强;高军;胡光岷;姚兴苗;;基于层叠模型的网络流量异常检测[A];2006中国西部青年通信学术会议论文集[C];2006年
相关重要报纸文章 前1条
1 刘少锋;构建智能弹性扩展的校园网络[N];中国电脑教育报;2005年
相关博士学位论文 前1条
1 高波;基于时间相关的网络流量建模与预测研究[D];哈尔滨工业大学;2013年
相关硕士学位论文 前8条
1 梅轩;基于扩散小波的网络流量模型研究及应用[D];北京交通大学;2016年
2 刘学文;基于分数差和分形滤波的网络流量模型[D];山东大学;2011年
3 代云亮;基于多分形小波的网络流量模型研究[D];电子科技大学;2013年
4 陈玉华;分数混合分数布朗运动:关于计算机网络流量模型的一些相关问题[D];华中科技大学;2013年
5 张久坤;网络流量模型与流量预测技术研究[D];西安电子科技大学;2012年
6 钟海珊;多平面交换在变长交换中的应用及多维网络流量模型的研究[D];电子科技大学;2006年
7 赵博;基于多分形尺度性质的网络流量模型研究[D];华中科技大学;2009年
8 王华军;基于小波分解和ARIMA的网络流量模型[D];山东大学;2011年
,本文编号:2307656
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2307656.html