针对僵尸主机的检测反制系统设计与实现
[Abstract]:Botnet is an attack network formed by the control of a large number of infected computers by the botnet program. The malicious controller can use the network to send spam and send out malicious attack traffic and other forms of malicious behavior. The new botnet uses P2P distributed protocol for node communication, which ensures the privacy of communication and command channel, which makes botnet become one of the most serious threats in the history of Internet. At present, the discussion of P2P botnet is usually focused on analyzing its survival model, and no efficient botnet detection technology has been developed. For new botnets, existing detection systems must have prior knowledge and can detect only a few botnets. This paper first introduces the basic knowledge of botnet in academic circles, gives the definition of botnet and the mainstream technology of detecting anti-botnet, and analyzes its advantages and disadvantages. Then, the common features of botnet are obtained by analyzing the characteristics of traffic and structure of several common botnet programs. Finally, a detection system for semi-distributed botnet is designed. The system includes capture module, malicious traffic detection module, data storage module, counter-control module and result output module. The malicious traffic detection module includes two detection engines, the traffic macro feature detection engine and the malicious feature detection engine. The traffic macro feature detection engine analyzes the zombie traffic from two aspects of space and time, and selects the synchronization time of the data. The FCM clustering algorithm is used to detect the suspicious nodes, and then the zombie nodes are selected by using the network structure features. On the premise of high accuracy, the method does not need to analyze the concrete communication content, and is not restricted by the communication protocol. The depth packet detection module detects the zombie program by extracting the characteristic words of the communication packet, and then identifies the known zombie program. The counter-control module counteracts the detection result of malicious traffic detection module and reduces the harm of botnet. In this paper, a variety of zombie programs are used to verify the effectiveness of the system.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP393.08
【参考文献】
相关期刊论文 前10条
1 李可;方滨兴;崔翔;刘奇旭;;僵尸网络发展研究[J];计算机研究与发展;2016年10期
2 徐建;吴烨虹;程晶晶;;移动僵尸网络研究与进展[J];计算机技术与发展;2015年05期
3 陈杰;陈家琪;;基于终端通信特征的P2P僵尸主机检测[J];信息技术;2014年02期
4 司成祥;孙波;杨文瀚;张慧琳;薛晓楠;;基于分布式的僵尸网络主动探测方法研究[J];通信学报;2013年S1期
5 张幼麟;;基于僵尸网络分类的防御技术[J];计算机安全;2013年08期
6 李晓利;汤光明;初晓;;基于DNS查询行为的Bot检测[J];计算机工程与应用;2015年01期
7 李鹤帅;朱俊虎;周天阳;王清贤;;P2P技术在僵尸网络中的应用研究[J];计算机工程;2012年14期
8 王天佐;王怀民;刘波;史佩昌;;僵尸网络中的关键问题[J];计算机学报;2012年06期
9 戴维;;僵尸网络检测算法的比较研究[J];信息化研究;2011年03期
10 胡玲玲;杨寿保;王菁;;P2P网络中Sybil攻击的防御机制[J];计算机工程;2009年15期
相关博士学位论文 前1条
1 高见;基于P2P的僵尸网络及关键技术研究[D];北京邮电大学;2011年
相关硕士学位论文 前6条
1 谢舜;基于流量分析的僵尸网络检测技术研究[D];西安电子科技大学;2014年
2 汤伟;基于数据流特征向量识别的P2P僵尸网络检测方法研究[D];中国海洋大学;2014年
3 李晓利;僵尸网络检测技术研究[D];解放军信息工程大学;2013年
4 戴维;基于IRC协议的僵尸网络检测系统的实现[D];电子科技大学;2010年
5 黄萍;新型P2P僵尸网络的研究[D];四川师范大学;2010年
6 印杰;基于支持向量机的入侵检测研究[D];南京理工大学;2008年
,本文编号:2314044
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2314044.html