基于Spark云平台的变压器故障并行诊断与分析
[Abstract]:With the rapid development of smart grid, the power industry has entered the "big data era." Transformer is the key equipment of power network running smoothly. Transformer fault diagnosis method can ensure the smooth operation of power system. In power system, transformer on-line monitoring technology can be used to find fault types in time. However, because of the large number of monitoring points and the acquisition of monitoring data many times in a period of time, the data volume increases rapidly. By parallelizing the data mining algorithm, the fast analysis of massive power transformer monitoring data is realized. Spark is a distributed memory computing framework, which has the advantages of lightweight and fast processing, compatible with Hadoop ecosystem, low learning cost and active community support. It supports many language programming interfaces and provides a new research idea for parallel analysis of massive transformer monitoring data. This paper introduces common types of transformer faults, introduces traditional and intelligent fault diagnosis methods in detail, analyzes the advantages and disadvantages of different methods, and proposes a parallel diagnosis and analysis scheme for power transformers based on Spark cloud platform. The naive Bayes method in Spark machine learning database is selected as the fault classification method of power transformer, and the DGA monitoring data is used as input to complete the parallel fault classification experiment. The experimental results show that the parallel classification method based on Spark is superior to the classification method in single machine environment. In addition, based on the research of fuzzy clustering algorithm, using distributed matrix and broadcast variable mechanism, the parallel fuzzy clustering algorithm Spark-FCM, is implemented on Spark platform to extend the Spark machine learning algorithm library. The algorithm is applied to transformer fault clustering, and the experimental results show that the method is feasible.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP393.09;TM41
【参考文献】
相关期刊论文 前10条
1 刘成;牛锐;范贺明;许静;朱永利;;基于Spark环境变压器故障并行诊断[J];电力科学与工程;2016年06期
2 王桂兰;周国亮;萨初日拉;朱永利;;Spark环境下的并行模糊C均值聚类算法[J];计算机应用;2016年02期
3 孟建良;刘德超;;一种基于Spark和聚类分析的辨识电力系统不良数据新方法[J];电力系统保护与控制;2016年03期
4 薛浩然;张珂珩;李斌;彭晨辉;;基于布谷鸟算法和支持向量机的变压器故障诊断[J];电力系统保护与控制;2015年08期
5 王德文;孙志伟;;电力用户侧大数据分析与并行负荷预测[J];中国电机工程学报;2015年03期
6 吴凯峰;刘万涛;李彦虎;苏伊鹏;肖政;裴旭斌;虎嵩林;;基于云计算的电力大数据分析技术与应用[J];中国电力;2015年02期
7 宋亚奇;周国亮;朱永利;李莉;王刘旺;王德文;;云平台下输变电设备状态监测大数据存储优化与并行处理[J];中国电机工程学报;2015年02期
8 郑含博;王伟;李晓纲;王立楠;李予全;韩金华;;基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J];高电压技术;2014年11期
9 禹建丽;卞帅;;基于BP神经网络的变压器故障诊断模型[J];系统仿真学报;2014年06期
10 张静;聂章龙;;基于主动学习的动态模糊聚类算法[J];计算机与现代化;2014年05期
相关博士学位论文 前2条
1 尹金良;基于相关向量机的油浸式电力变压器故障诊断方法研究[D];华北电力大学;2013年
2 郑含博;电力变压器状态评估及故障诊断方法研究[D];重庆大学;2012年
相关硕士学位论文 前3条
1 杨有婵;基于改进PGSA-BP神经网络的电力变压器故障综合诊断仿真研究[D];广西大学;2013年
2 南浩;基于改进遗传算法优化BP神经网络的变压器故障诊断[D];华北电力大学;2012年
3 周媛媛;基于DGA的变压器故障诊断[D];长沙理工大学;2010年
,本文编号:2328563
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2328563.html