网络安全态势的评估与预测技术研究
[Abstract]:With the arrival of the information age, the Internet has been rapidly developed and popularized. But at the same time, it also brings serious harm to people's life, that is, network security incidents occur frequently. Although there are a variety of network security devices available to protect Internet security, because they are designed for different security issues, they are specific and have different emphases. So this leads to their inability to evaluate and predict the security of the entire network. In this paper, through the detailed analysis and research on the current network security situation assessment and prediction methods, it is shown that how to improve the prediction accuracy and convergence rate of network security situation prediction is still a hot issue to be solved. In order to improve the prediction accuracy of network security situation prediction, a radial basis function neural network security situation prediction model based on dichotomous K-means is proposed in this paper. In this method, the binary K-means clustering algorithm is used to determine the data center and the expansion function of the radial basis function neural network, which makes up for the difficulty of determining the data center of the radial basis function neural network. The experimental results show that this method can improve the prediction accuracy under certain conditions. In order to improve the convergence rate of network security situation prediction, a network security situation prediction method based on improved artificial immune is proposed in this paper. It makes up for the data redundancy in the process of generating the initial antibody randomly. Experimental results show that the proposed method improves the convergence rate of prediction.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP393.08
【参考文献】
相关期刊论文 前10条
1 陈善学;杨政;朱江;李方伟;;一种基于累加PSO-SVM的网络安全态势预测模型[J];计算机应用研究;2015年06期
2 李方伟;邓武;朱江;;一种基于复杂网络的网络安全态势预测机制[J];计算机应用研究;2015年04期
3 李方伟;郑波;朱江;张海波;;一种基于AC-RBF神经网络的网络安全态势预测方法[J];重庆邮电大学学报(自然科学版);2014年05期
4 黄同庆;庄毅;;一种实时网络安全态势预测方法[J];小型微型计算机系统;2014年02期
5 刘雷雷;臧洌;邱相存;;基于Kalman算法的网络安全态势预测[J];计算机与数字工程;2014年01期
6 谢丽霞;王亚超;于巾博;;基于神经网络的网络安全态势感知[J];清华大学学报(自然科学版);2013年12期
7 石波;谢小权;;基于D-S证据理论的网络安全态势预测方法研究[J];计算机工程与设计;2013年03期
8 曾斌;钟萍;;网络安全态势预测方法的仿真研究[J];计算机仿真;2012年05期
9 卓莹;张强;龚正虎;;网络态势预测的广义回归神经网络模型[J];解放军理工大学学报(自然科学版);2012年02期
10 王庚;张景辉;吴娜;;网络安全态势预测方法的应用研究[J];计算机仿真;2012年02期
相关会议论文 前1条
1 韩伟红;隋品波;贾焰;;大规模网络安全态势分析与预测系统YHSAS[A];第27次全国计算机安全学术交流会论文集[C];2012年
相关博士学位论文 前1条
1 孟锦;网络安全态势评估与预测关键技术研究[D];南京理工大学;2012年
,本文编号:2378931
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2378931.html