社交媒体中情感传播关键问题研究
[Abstract]:With the development of Web2.0, users can upload text, images, audio, video, and so on through social media to share their status or content of interest. The user's forwarding behavior makes the information spread at an index level, which is much higher than the propagation speed of the traditional media, so the social media has gradually replaced the traditional news media as an important channel for the public to obtain information. The most basic of the social media is the text message, which contains not only the substantive content, but also the user's evaluation of things or events, and the evaluation of the user's feelings. The emotion is spread with the text information through the user's forwarding behavior. According to the emotional infection theory of psychology, the emotion is very easy to be infected with each other among the users, which causes a wide range of attention and discussion among the public. This article mainly focuses on the deep analysis and study of the four aspects of the emotional communication in the social media. A user influence ranking algorithm based on emotional consistency is proposed to find the opinion leader. The algorithm mainly studies the influence of the emotion and the original emotion in the forwarding process. The concept of the emotion-consistent value is used to indicate the degree of the user's consistency with the original micro-emotion in the forwarding process, and the concept of the emotion-consistent weight is proposed to indicate the degree of the relationship between the two users in the forwarding process. according to the characteristics of the user, the user can be divided into three categories: leaf nodes, users of the leaf nodes and the remaining nodes. the influence of the leaf node is 0; the influence of the user with the degree of the leaf node is mainly from the emotion consistent value of the degree user; and the influence of the residual node is from the influence of the degree user and the emotion consistent value of the degree user. The validity of the model is verified through the sina microbo data set. An independent cascade model based on the change of emotion is proposed to solve the problem of maximizing the influence of the positive society. The model of maximizing the influence of social influence is based on the experimental results of the information transmission model, and the process of interpreting the influence based on the information transmission model based on the change of emotion is put forward. The information dissemination process is as follows: At the initial stage of the information dissemination, the user never knows the information to hold forward or negative feelings at a certain probability. Then, as more and more users in the network participate in the forwarding of information, the user interacts with each other, that is, the user decides whether to change the initial emotion with a certain probability. the positive influence is calculated when the user no longer has a user changing the emotion. The information dissemination model verifies the validity of the model through the real social media data. The independent cascade model based on the change of emotion is applied to three real networks to calculate the positive influence. By contrast with the existing algorithm, the independent cascade model based on the change of emotion can get the maximum positive influence. An emotion prediction model based on emotional consistency is proposed to improve the accuracy of the prediction target emotion. The model puts forward the concept of mass emotion to express the emotion of the general public in the comments, and puts forward the concept of the public sentiment consistency to show the degree of the user's agreement with the general public. The user can be divided into three categories based on the public emotional consistency: the independent user, the approval user and the initial user. The independent user represents a user with a small influence with the general public, that is, a user with a small general feeling consistency value, and a user who agrees with the general public feeling, that is, a user with a large emotional consistency value; the initial user indicates that there is no history of history to analyze the user associated with the general sentiment. The emotion prediction algorithm based on the emotion consistency combines the emotion of the public, the personal emotion, the friend emotion and the quasi-friend emotion to predict the target emotion. For different types of users, different emotion combinations are used for emotional prediction. The results show that the model is better than the existing model. Two emotion-based information transmission models are proposed to study the transmission process of different emotions in social networks: an emotional-based epidemic model and an emotion-based independent cascade model. The difference between the two models is whether the emotion changes in the process of emotional communication. In the model of the infectious disease based on emotion, it is assumed that the emotion does not change in the course of the transmission, and the model proposes that the weight based on the emotion indicates the forwarding strength between the user and the user for some kind of emotion. The emotion-based independent cascade model assumes that the emotion changes in the course of propagation. The model divides the emotion propagation into three parts: first, the concept of the forward probability is proposed to study whether the information containing the emotion is forwarded; secondly, whether the emotion is changed after the emotion is forwarded by using the machine learning algorithm; and thirdly, The concept of transformation weight is proposed to study the emotion if it changes after being forwarded. The results show that the performance of the independent cascade model based on emotion is better.
【学位授予单位】:北京邮电大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:G206;TP393.09
【相似文献】
相关期刊论文 前10条
1 ;社交媒体十大趋势[J];现代营销(经营版);2009年05期
2 ;怎样看待社交媒体[J];中国经济和信息化;2011年12期
3 马尔科姆;;被高估的社交媒体[J];当代传播;2011年03期
4 ;未来社交媒体10大趋势[J];中国传媒科技;2011年07期
5 启程;;社交媒体之“湿”与社会之痛[J];检察风云;2011年17期
6 曹博林;;社交媒体:概念、发展历程、特征与未来——兼谈当下对社交媒体认识的模糊之处[J];湖南广播电视大学学报;2011年03期
7 ;国外媒体对记者使用社交媒体的规定[J];新闻记者;2011年12期
8 马小娟;;论社交媒体对公民政治参与的影响[J];中国出版;2011年24期
9 冯岩;;人文城市发展中的社交媒体管理[J];城市发展研究;2012年03期
10 文卫华;刘嘉丽;王雅萱;;试析社交媒体在新闻传播中的运用与边界[J];中国报业;2012年08期
相关会议论文 前3条
1 袁靖华;;微博的理想与现实——兼论社交媒体建构公共空间的三大困扰因素[A];数字未来与媒介社会2[C];2010年
2 洪婧茹;;社交媒体与上海大学生的环保参与:从线上关注到线下行动[A];中华新闻传播学术联盟第六届研究生学术研讨会论文集[C];2014年
3 王斌;郑满宁;;扭转“逆差”:社交媒体时代国人形象传播机制及策略[A];新闻学论集(第30辑)[C];2014年
相关重要报纸文章 前10条
1 韩军 编译;社交媒体营销助推器还是新航向?[N];中国民航报;2010年
2 本报记者 陈晓平;社交媒体重构商业?[N];21世纪经济报道;2011年
3 一鸣;出版商介入社交媒体的危险[N];中国图书商报;2011年
4 Chris Nerney;社交媒体带来的5大安全威胁[N];网络世界;2011年
5 李鑫源;社交媒体影响不容小窥[N];科技日报;2011年
6 陈晓平;社交媒体的“葫芦论”[N];21世纪经济报道;2011年
7 肖明超(新生代市场监测机构副总经理);社交媒体引发营销裂变[N];中国图书商报;2011年
8 文化学者 常江;社交媒体的“情绪化”[N];新华每日电讯;2012年
9 朱永磊 贝恩大中华区电信、媒体与高科技业务主管;如何成为社交媒体的长期赢家[N];通信产业报;2012年
10 记者 赵中文;东南亚企业倾向利用社交媒体经商[N];中华工商时报;2012年
相关博士学位论文 前10条
1 王琦瑶;社交媒体中情感传播关键问题研究[D];北京邮电大学;2016年
2 张雪;复杂网络链路分析与社交媒体预测[D];国防科学技术大学;2013年
3 罗准辰;社交媒体中的信息检索与传播分析[D];国防科学技术大学;2013年
4 丹尼尔;社交媒体在企业传播中的使用:可口可乐中国和可口可乐加纳案例研究[D];复旦大学;2014年
5 朱星玮;社交媒体信息结构化组织及其应用研究[D];清华大学;2015年
6 谢松县;社交媒体中观点信息分析与应用[D];国防科学技术大学;2014年
7 陈夏雨;工作场所中企业社交媒体可供性的实证研究[D];中国科学技术大学;2017年
8 张伟;基于地点的社交媒体中用户建模与内容推荐[D];清华大学;2016年
9 唐李洋;基于社交媒体大数据的Twitter营销策略研究[D];合肥工业大学;2015年
10 董伟;挖掘和分析文本来识别公司财务欺诈:针对财务报表和社交媒体的分析[D];中国科学技术大学;2017年
相关硕士学位论文 前10条
1 李雪絮;社交媒体广告的表现策略研究[D];浙江理工大学;2013年
2 吕蒙;网络社交媒体关系网络与品牌传播[D];辽宁大学;2013年
3 吴祖宏;大学生手机社交媒体依赖的问卷编制及特点研究[D];西南大学;2014年
4 张茜茹;大学生社交媒体依赖的测量及其与主观幸福感的关系[D];山西师范大学;2015年
5 徐蕾;政务社交媒体用户使用意愿研究[D];南京大学;2015年
6 巩丽;社交媒体对电视节目受众观看行为的影响研究[D];复旦大学;2014年
7 邹姝玉;社交媒体自我表达研究[D];四川师范大学;2015年
8 秦晶晶;大学生社交媒体的使用情况、社会支持与社交焦虑的关系及其情绪启动效应研究[D];闽南师范大学;2015年
9 蒋胜;基于社交媒体网络的消费者网购决策及商品推荐研究[D];安徽工程大学;2015年
10 任雁;“文化迁徙”背景下中国留学社交媒体使用的“两栖”性研究[D];山东大学;2015年
,本文编号:2380262
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2380262.html