基于规则和统计的网络不良信息识别研究
[Abstract]:The rapid development of the Internet has brought great and profound influence to the society and people's life. As a carrier of information dissemination, Internet has unparalleled advantages compared with traditional paper media. It provides a high quality platform for information dissemination in different fields such as politics, economy, culture and so on. It also creates a new way for people to communicate with each other. Internet brings convenience to people's life, but also brings some negative effects. In the virtual network environment, every user is transformed into a string of virtual symbols. The information and comments issued by the users through personal web pages, Weibo, WeChat public numbers, forums, etc., are all uncertain. Even though many platforms take certain measures of prior vetting and filtering after the event, there are still some people with hidden identities, moral awareness, and poor cultural attainment, making a large number of false, pornographic, politically sensitive, and swindling types. Superstition and other information are filled with Internet corner, corrupt social atmosphere, demagoguery, and cause great damage to people's physical and mental health. As a kind of network social media with a large number of users, Weibo is a platform for sharing, disseminating and obtaining information based on user relations. The information posted by users can be pushed to fans through clients or platforms in a timely manner, thus realizing real time. Quick dissemination of information. At the same time, Weibo fans can interact with the blogger by publishing comments, or can transmit, comment, collect and other operations, achieve information sharing, dissemination, expand the scope of information dissemination, enhance the influence of information. Weibo's this characteristic also led to Weibo to become the hiding place of bad information at the same time. Therefore, Weibo has become the object of many scholars. In order to purify the network environment, keep minors away from the violation of bad information and provide Internet users with good search experience, it is necessary to control the publication and dissemination of these bad information and take appropriate measures and means to strengthen supervision and management. Therefore, the purpose of this paper is to identify the bad information in the network, combined with the existing Chinese text mining technology to carry out experimental research. The crawler program collects Weibo users to comment and forward the text of a particular Weibo, and gets the original data. The original data are removed independent symbols, word segmentation, dependency tagging, word frequency statistics and so on, and the text feature set is extracted by using the obtained data. In order to improve the accuracy of word segmentation, this paper designs a bad thesaurus, which includes the basic word list, the synonym table, the abbreviated lexicon and the dependency table of the words. The feature extraction algorithm based on statistics is combined with dependency analysis to extract text features effectively, and a text classification model is implemented by using naive Bayes algorithm. Furthermore, the model is applied to the classification of user comments in Weibo, and the classifier is tested by experiments. Compared with the improved model, the classification accuracy and recall rate are obviously improved. Finally, this paper summarizes the research, puts forward the innovation and shortcomings of this paper, and continues to improve in the follow-up research process.
【学位授予单位】:华中师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.1;TP393.092
【相似文献】
相关期刊论文 前10条
1 科卞;信号细微特征提取分析技术[J];电子科技大学学报;2000年02期
2 马少华,高峰,李敏,吴成东;神经网络分类器的特征提取和优选[J];基础自动化;2000年06期
3 管聪慧,宣国荣;多类问题中的特征提取[J];计算机工程;2002年01期
4 胡威;李建华;陈波;;入侵检测建模过程中特征提取最优化评估[J];计算机工程;2006年12期
5 朱玉莲;陈松灿;赵国安;;推广的矩阵模式特征提取方法及其在人脸识别中的应用[J];小型微型计算机系统;2007年04期
6 赵振勇;王保华;王力;崔磊;;人脸图像的特征提取[J];计算机技术与发展;2007年05期
7 冯海亮;王丽;李见为;;一种新的用于人脸识别的特征提取方法[J];计算机科学;2009年06期
8 朱笑荣;杨德运;;基于入侵检测的特征提取方法[J];计算机应用与软件;2010年06期
9 王菲;白洁;;一种基于非线性特征提取的被动声纳目标识别方法研究[J];软件导刊;2010年05期
10 陈伟;瞿晓;葛丁飞;;主观引导特征提取法在光谱识别中的应用[J];科技通报;2011年04期
相关会议论文 前10条
1 尚修刚;蒋慰孙;;模糊特征提取新算法[A];1997中国控制与决策学术年会论文集[C];1997年
2 潘荣江;孟祥旭;杨承磊;王锐;;旋转体的几何特征提取方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年
3 薛燕;李建良;朱学芳;;人脸识别中特征提取的一种改进方法[A];第十三届全国图象图形学学术会议论文集[C];2006年
4 杜栓平;曹正良;;时间—频率域特征提取及其应用[A];2005年全国水声学学术会议论文集[C];2005年
5 黄先锋;韩传久;陈旭;周剑军;;运动目标的分割与特征提取[A];全国第二届信号处理与应用学术会议专刊[C];2008年
6 魏明果;;方言比较的特征提取与矩阵分析[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
7 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 秦建玲;李军;;基于核的主成分分析的特征提取方法与样本筛选[A];2005年中国机械工程学会年会论文集[C];2005年
9 刘红;陈光,
本文编号:2382415
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2382415.html