当前位置:主页 > 管理论文 > 移动网络论文 >

网络入侵中的异常信号抗干扰检测系统的设计与实现

发布时间:2018-12-16 23:19
【摘要】:由于网络入侵类型多种多样,导致网络入侵异常信号抗干扰检测系统的检测准确率和检测稳定性不高。为此,设计性能较高的网络入侵异常信号抗干扰检测系统,该系统由激励端、检测端和处理端组成。激励端将由网络入侵产生的信号转换成正弦波信号,对正弦波信号进行放大后传输到检测端。激励端同时产生激励信号和标准信号,用于调用检测端进行异常信号检测工作以及处理端的初始化。检测端通过传感器接收激励信号和正弦波信号,将传感器线圈输出电压作为异常信号检测的输入,利用异常信号抗干扰定位、检测函数,实现对异常信号的抗干扰检测。处理端利用S3C2440a处理芯片对检测端检测出的网络入侵异常信号进行滤波、整流和异常信号显示。经实验分析可知,所设计的系统具有较高的检测准确率和检测稳定性,可较好地实现设计初衷。
[Abstract]:Because of the variety of network intrusion types, the detection accuracy and detection stability of the anti-interference detection system of network intrusion anomaly signal are not high. Therefore, the anti-interference detection system of network intrusion anomaly signal with high performance is designed. The system is composed of excitation terminal, detection end and processing terminal. The signal generated by the network intrusion is converted into a sine wave signal at the excitation end, which is amplified and transmitted to the detection terminal. The excitation terminal generates both the excitation signal and the standard signal, which is used to call the detection terminal to detect the abnormal signal and initialize the processing terminal. The detection end receives the excitation signal and the sine wave signal through the sensor. The output voltage of the sensor coil is taken as the input of the abnormal signal detection. The anti-interference detection function is used to realize the anti-interference detection of the abnormal signal by using the abnormal signal anti-interference location and detection function. The processing terminal uses S3C2440a processing chip to filter, rectify and display the abnormal signal of network intrusion detected at the detection end. The experimental results show that the designed system has high detection accuracy and stability, and can realize the original intention of the design.
【作者单位】: 浙江大学;义乌工商职业技术学院;
【基金】:浙江省教育厅高校国内访问学者专业发展项目(144)
【分类号】:TP393.08

【参考文献】

相关期刊论文 前8条

1 史振华;刘外喜;杨家烨;;SDN架构下基于ICMP流量的网络异常检测方法[J];计算机系统应用;2016年04期

2 吴浩;王贤秋;;基于改进SVM的网络异常数据优化分类方法研究[J];科技通报;2016年02期

3 刘敬;谷利泽;钮心忻;杨义先;;基于单分类支持向量机和主动学习的网络异常检测研究[J];通信学报;2015年11期

4 李宇,

本文编号:2383219


资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2383219.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3fb8c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com