面向社会网络的隐私保护关键技术研究
[Abstract]:With the rapid development of network technology and social networking sites, such as Facebook, Twitter, and Renren, the number of user groups that make friends, contacts, and interact through social networking sites has increased rapidly. In order to tap the scientific and commercial value of social network, more and more researchers and developers focus their attention on the development of scientific research and application to the virtual world of social network, and social network analysis has become the sociology, geography, economics, The research focus of many subjects such as informatics and so on. Data mining and analysis of potential patterns based on social network data are more scientific and more effective than traditional relational data. However, the social network data contains sensitive privacy information, so privacy information in the social network needs to be protected during data distribution and sharing. In the social network, the privacy information type is more extensive, and the privacy leakage mode presents the diversity, so that the privacy leakage in the social network is prevented from being a great challenge. The protection of social network privacy is a hot issue to be solved in the field of data privacy protection. In this paper, the key technologies of the privacy protection of various social networks are deeply studied, including the protection of many kinds of privacy information such as the identity of the node, the sensitive relation and the sensitive attribute value, and the data availability of the anonymous graph is kept. The contribution of this paper mainly includes the following aspects: (1) In the aspect of node privacy protection, this paper studies the problem that an attacker can launch a node identification attack by using the edge weight in the weighted social network diagram as the background knowledge, thus leading to the problem of node privacy leakage. In this paper, a weighted graph node privacy protection model is proposed to prevent the node identification attack based on the edge weight, and a generalized anonymous method is designed to implement the weighted graph node privacy protection model. The experimental results show that the proposed weighted graph node privacy protection model can effectively prevent the node identification attack for the weighted graph, and the original structure property can be restored unbiasedly based on the anonymous graph. (2) In the aspect of the privacy protection of the sensitive relation, the attacker can use the link deduction technique to identify the sensitive relation, and study how to prevent the sensitive relation privacy leakage caused by the link deduction attack. Two link deduction attacks, single-step link deduction attacks, and cascade link deduction attacks are defined. In order to prevent the link deduction attack, an anti-deduction mechanism based on the tracing of the link world is proposed to cut off the deduction path of the sensitive link, and the anti-deduction algorithm is designed, and the data availability of the graph is maintained while the sensitive relation is protected. The experimental results show that the sensitive link anti-deduction mechanism can effectively protect the privacy of the sensitive relation in the social network and maintain the high availability of the published graph data. (3) In the aspect of the privacy protection of sensitive attribute values, consider how each node in the complex social network contains the personal information related to it, and study how to defend the personal information privacy leakage of the social network. In this paper, the k-aliasing model is designed to protect the privacy of personal information, and a security node-personal information mapping mechanism is proposed, and k-mapping is recorded. At the same time, the optimization technique is designed to improve the implementation efficiency and data availability of k-map. The experiment shows that the proposed k-mapping method reduces the personal information loss and similar information loss caused by the anonymous process while protecting the personal information privacy, so that the anonymous graph data has high query accuracy. (4) In keeping the data availability of graph, how to keep the reachability between nodes in the process of anonymity. In this paper, a reachability-preserving-graph anonymity algorithm (RPA algorithm) is proposed. The basic idea of the RPA algorithm is to group the nodes and to adopt the greedy strategy for anonymity, so as to reduce the loss of reachability information in the anonymous process. In order to improve the efficiency of the performance of the RPA algorithm, it is proposed to use the reachable interval to effectively evaluate the anonymous loss caused by the edge adding operation; secondly, by constructing the candidate neighbor index, the anonymity process of the RPA to each node is accelerated. Through a large number of experimental analysis, the anonymous map generated by the RPA algorithm maintains the inter-node reachability, so that the anonymous graph has good data availability in the aspect of reachability query. and (5) realizing the social network data security release prototype demonstration system SNSPDEMO. The SNSPDEMO system can carry out security detection on the social network for different privacy leakage types, and visually display the information of the node and the side with the privacy leakage through the graphical interface; The SNSPDEMO system integrates the social network privacy protection technology in this paper, so as to generate a secure social network diagram that provides the corresponding privacy protection, and display the graph modification operation made by the system through the graphic interface display system, and compare the difference between the original and the safety diagram. In conclusion, based on the potential threats and challenges in the social network privacy protection, this paper studies the key technologies of the social network privacy protection, such as the node privacy protection, the privacy protection of the sensitive relation, the privacy protection of the sensitive attribute values, the maintenance of the security drawing availability, etc., so as to provide a foundation for providing more comprehensive and perfect protection for social network privacy information.
【学位授予单位】:东北大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TP393.08
【相似文献】
相关期刊论文 前10条
1 李学聚;;新时期读者隐私保护探析[J];科技情报开发与经济;2006年13期
2 管重;;谁偷窥了你的隐私[J];数字通信;2007年15期
3 孔为民;;大学图书馆与隐私保护[J];科技情报开发与经济;2007年26期
4 尹凯华;熊璋;吴晶;;个性化服务中隐私保护技术综述[J];计算机应用研究;2008年07期
5 高枫;张峰;周伟;;网络环境中的隐私保护标准化研究[J];电信科学;2013年04期
6 高密;薛宝赏;;我的电脑信息 隐私保护很强大[J];网友世界;2010年11期
7 ;为自己的电子商务设计隐私保护[J];个人电脑;2000年07期
8 ;隐私保护的10个准则[J];个人电脑;2000年07期
9 岑婷婷;韩建民;王基一;李细雨;;隐私保护中K-匿名模型的综述[J];计算机工程与应用;2008年04期
10 郑悦;;犹抱隐私半遮面[J];中国计算机用户;2008年14期
相关会议论文 前10条
1 郑思琳;陈红;叶运莉;;实习护士病人隐私保护意识和行为调查分析[A];中华护理学会第8届全国造口、伤口、失禁护理学术交流会议、全国外科护理学术交流会议、全国神经内、外科护理学术交流会议论文汇编[C];2011年
2 孙通源;;基于局部聚类和杂度增益的数据信息隐私保护方法探讨[A];中国水利学会2013学术年会论文集——S4水利信息化建设与管理[C];2013年
3 张亚维;朱智武;叶晓俊;;数据空间隐私保护平台的设计[A];第二十五届中国数据库学术会议论文集(一)[C];2008年
4 公伟;隗玉凯;王庆升;胡鑫磊;李换双;;美国隐私保护标准及隐私保护控制思路研究[A];2013年度标准化学术研究论文集[C];2013年
5 张鹏;于波;童云海;唐世渭;;基于随机响应的隐私保护关联规则挖掘[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
6 桂琼;程小辉;;一种隐私保护的分布式关联规则挖掘方法[A];2009年全国开放式分布与并行计算机学术会议论文集(下册)[C];2009年
7 俞笛;徐向阳;解庆春;刘寅;;基于保序加密的隐私保护挖掘算法[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年
8 李贝贝;乐嘉锦;;分布式环境下的隐私保护关联规则挖掘[A];第二十二届中国数据库学术会议论文集(研究报告篇)[C];2005年
9 徐振龙;郭崇慧;;隐私保护数据挖掘研究的简要综述[A];第七届(2012)中国管理学年会商务智能分会场论文集(选编)[C];2012年
10 潘晓;郝兴;孟小峰;;基于位置服务中的连续查询隐私保护研究[A];第26届中国数据库学术会议论文集(A辑)[C];2009年
相关重要报纸文章 前10条
1 记者 李舒瑜;更关注隐私保护和人格尊重[N];深圳特区报;2011年
2 荷兰鹿特丹医学中心博士 吴舟桥;荷兰人的隐私[N];东方早报;2012年
3 本报记者 周静;私密社交应用风潮来袭 聚焦小众隐私保护是关键[N];通信信息报;2013年
4 独立分析师 陈志刚;隐私管理应归个人[N];通信产业报;2013年
5 本报记者 朱宁宁;商业利益与隐私保护需立法平衡[N];法制日报;2014年
6 袁元;手机隐私保护萌发商机[N];证券日报;2014年
7 王尔山;跟隐私说再见[N];21世纪经济报道;2008年
8 记者 武晓黎;360安全浏览器推“隐私浏览”模式[N];中国消费者报;2008年
9 早报记者 是冬冬;“美国隐私保护法律已过时”[N];东方早报;2012年
10 张晓明;隐私的两难[N];电脑报;2013年
相关博士学位论文 前10条
1 孟祥旭;基于位置的移动信息服务技术与应用研究[D];国防科学技术大学;2013年
2 兰丽辉;基于向量模型的加权社会网络发布隐私保护方法研究[D];江苏大学;2015年
3 柯昌博;云服务组合隐私分析与保护方法研究[D];南京航空航天大学;2014年
4 李敏;基于位置服务的隐私保护研究[D];电子科技大学;2014年
5 陈东;信息物理融合系统安全与隐私保护关键技术研究[D];东北大学;2014年
6 张柯丽;信誉系统安全和隐私保护机制的研究[D];北京邮电大学;2015年
7 Kamenyi Domenic Mutiria;[D];电子科技大学;2014年
8 孙崇敬;面向属性与关系的隐私保护数据挖掘理论研究[D];电子科技大学;2014年
9 刘向宇;面向社会网络的隐私保护关键技术研究[D];东北大学;2014年
10 张坤;面向多租户应用的云数据隐私保护机制研究[D];山东大学;2012年
相关硕士学位论文 前10条
1 邹朝斌;SNS用户隐私感知与自我表露行为的关系研究[D];西南大学;2015年
2 李汶龙;大数据时代的隐私保护与被遗忘权[D];中国政法大学;2015年
3 孙琪;基于位置服务的连续查询隐私保护研究[D];湖南工业大学;2015年
4 尹惠;无线传感器网络数据融合隐私保护技术研究[D];西南交通大学;2015年
5 王鹏飞;位置服务中的隐私保护技术研究[D];南京理工大学;2015年
6 顾铖;基于关联规则的隐私保护算法研究[D];南京理工大学;2015年
7 崔尧;基于匿名方案的位置隐私保护技术研究[D];西安工业大学;2015年
8 毕开圆;社会网络中用户身份隐私保护模型的研究[D];大连海事大学;2015年
9 黄奚芳;基于差分隐私保护的集值型数据发布技术研究[D];江西理工大学;2015年
10 高超;具有隐私保护意识的大样本双盲随机对照试验数据管理系统的设计与实现[D];山东大学;2015年
,本文编号:2386696
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2386696.html