当前位置:主页 > 管理论文 > 移动网络论文 >

基于云模型的信息设备健康管理与故障预警研究

发布时间:2019-01-03 21:30
【摘要】:随着计算机技术的迅速发展和企业的信息化程度越来越高,信息设备作为信息化建设重要支撑,其重要性不言而喻。对信息设备实行状态检修,是保障企业机房信息化设备的正常运转的重要手段,信息设备的健康管理和故障预警作为状态检修的重要组成部分,其研究具有重要的实际意义。云模型作为定性指标与定量指标相互转换的一个有效工具,能同时兼顾变量的随机性和模糊性,可以用于解决信息设备健康管理和故障预警中的不确定性的问题。本文通过分析现有的设备健康管理和故障预警技术,发现了对定性指标的评价方面的研究存在不足之处,提出一种基于云模型的评估方法对信息设备进行健康状况评估,并提出基于云模型和最小二乘支持向量机相结合的信息设备故障预警方法,通过结合健康评估指数和预警分析结果实现对信息设备的状态检修。同时,通过实验验证了云模型在信息设备健康管理和故障预警中具有良好的实用性。最后,对信息设备状态检修辅助决策系统进行了设计和部分模块的实现,对系统各个关键功能模块进行了详细设计,创建了业务流程图及系统数据流图,并对系统的数据库进行了详细的设计。实现对信息设备的健康管理和故障预警,为状态检修提供辅助决策意见。
[Abstract]:With the rapid development of computer technology and the increasing degree of enterprise informatization, the importance of information equipment as an important support of information construction is self-evident. Condition-based maintenance of information equipment is an important means to ensure the normal operation of information equipment in enterprise computer room. The health management and fault warning of information equipment as an important part of condition-based maintenance, its research has important practical significance. As an effective tool for transforming qualitative and quantitative indexes, cloud model can take into account the randomness and fuzziness of variables, and can be used to solve the uncertainty problems in information equipment health management and fault warning. Based on the analysis of the existing equipment health management and fault warning technology, this paper finds out the shortcomings of the research on the evaluation of qualitative indicators, and puts forward a method based on cloud model to evaluate the health status of information equipment. An information equipment fault early warning method based on cloud model and least squares support vector machine is proposed. The condition maintenance of information equipment is realized by combining health assessment index and early warning analysis results. At the same time, the experiments show that the cloud model has good practicability in information equipment health management and fault warning. Finally, the information equipment condition-based maintenance assistant decision system is designed and some modules are implemented. The key function modules of the system are designed in detail, and the business flow chart and the system data flow diagram are created. The database of the system is designed in detail. Realize the health management and fault early warning of information equipment, and provide auxiliary decision advice for condition maintenance.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP393.09;TP18

【参考文献】

相关期刊论文 前10条

1 张景阳;潘光友;;多元线性回归与BP神经网络预测模型对比与运用研究[J];昆明理工大学学报(自然科学版);2013年06期

2 徐茹枝;王婧;朱少敏;许瑞辉;;采用Boosting方法预测电力信息网络的威胁态势[J];电网技术;2013年10期

3 孟小峰;慈祥;;大数据管理:概念、技术与挑战[J];计算机研究与发展;2013年01期

4 刘志伟;刘锐;徐劲松;李毅;周黎明;;复杂系统故障预测与健康管理(PHM)技术研究[J];计算机测量与控制;2010年12期

5 陈贵林;;一种定性定量信息转换的不确定性模型——云模型[J];计算机应用研究;2010年06期

6 罗峗骞;夏靖波;陈天平;;基于云模型和熵权的网络性能综合评估模型[J];重庆邮电大学学报(自然科学版);2009年06期

7 郭金玉;张忠彬;孙庆云;;层次分析法的研究与应用[J];中国安全科学学报;2008年05期

8 黄海生;王汝传;;基于隶属云理论的主观信任评估模型研究[J];通信学报;2008年04期

9 杜湘瑜;尹全军;黄柯棣;梁甸农;;基于云模型的定性定量转换方法及其应用[J];系统工程与电子技术;2008年04期

10 张宝珍;;预测与健康管理技术的发展及应用[J];测控技术;2008年02期

相关博士学位论文 前2条

1 陈安伟;智能电网技术经济综合评价研究[D];重庆大学;2012年

2 段江娇;基于模型的时间序列数据挖掘[D];复旦大学;2008年



本文编号:2399895

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2399895.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dd1ff***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com