当前位置:主页 > 管理论文 > 移动网络论文 >

大规模网络虚拟化监测方法的研究与实现

发布时间:2019-01-04 10:17
【摘要】:随着网络的快速发展,网络的拓扑结构和新型业务不断出现。为了保证网络的正常运行,提供全面可靠的网络管理,需要研究可行性的网络监测方法。大规模网络作为一种常见的网络形式,具有维数多、层级多、结构复杂等特点,对大规模网络进行有效的管理并提供准确的网络数据有着重要的意义。虚拟化监测方法根据网络的拓扑信息以及节点属性提供多种测量模式,完成对网络的动态监测。 大规模网络结构复杂,需要研究有针对性的监测方法。本文介绍了云监测系统,包括云监测平台和部署到网络中的探针。对于监测点的选取,探针的部署必须在代价和覆盖范围之间进行权衡。该文以最小化监测探针数目为目标,同时覆盖尽可能广的网络链路,采用了一种基于蚁群算法的网络监测探针部署方法。如果测量集合中的监测点没有部署探针,系统进行自动部署探针程序。根据网络情况以及节点的状态,可以采用虚拟机镜像方式和软件包部署方式。系统提供三种网络监测方法满足不同用户的需求,分别为指定链路模式、自动监测模式、用户制定模式。在任务执行过程中系统监测节点的资源状态,动态调整探针,灵活调整监测点位置。系统部署在全球性大规模网络PlanetLab上进行部署测试,下发大量长时间任务收集测量数据,验证了系统对网络监测结果的准确性和运行的可靠性。 在介绍虚拟化监测方法的过程中,首先介绍了本文的选题背景及意义,说明了对大规模虚拟化监测方法提出的背景。随后对相关技术背景,包括网络测量发展现状及性能指标等进行了阐述。通过对虚拟化监测方法的需求分析,对系统进行总体设计并对各个子功能进行详细设计。随后对监测点选取方法、自动部署、灵活调整监测点实现过程进行了说明。系统最后在大规模网络P1anetLab上进行实验测试,并对测量结果进行了分析。测试数据验证了虚拟化监测方法的有效性以及稳定性。
[Abstract]:With the rapid development of network, network topology and new services are emerging. In order to ensure the normal operation of the network and provide comprehensive and reliable network management, it is necessary to study the feasible network monitoring method. As a common network form, large-scale network has many characteristics, such as multi-dimension, multi-level, complex structure, etc. It is of great significance to manage large-scale network effectively and provide accurate network data. Virtualization monitoring method provides a variety of measurement modes according to the network topology information and node properties to complete the dynamic monitoring of the network. Because of the complexity of large-scale network structure, targeted monitoring methods need to be studied. This paper introduces cloud monitoring system, including cloud monitoring platform and probe deployed to the network. For the selection of monitoring points, the deployment of probes must be balanced between cost and coverage. Aiming at minimizing the number of monitoring probes and covering as wide a network link as possible, an ant colony algorithm based approach for the deployment of network monitoring probes is proposed in this paper. If the probe is not deployed at the monitoring point in the measurement set, the system performs an automatic probe deployment program. According to the network situation and the status of nodes, virtual machine mirror and package deployment can be adopted. The system provides three network monitoring methods to meet the needs of different users, namely, designated link mode, automatic monitoring mode, and user development mode. In the process of task execution, the system monitors the resource status of nodes, adjusts the probe dynamically, and adjusts the position of monitoring points flexibly. The system is deployed on the global large-scale network PlanetLab for deployment test, and a large number of long time tasks are sent to collect the measurement data, which verifies the accuracy of the system to the network monitoring results and the reliability of the operation. In the process of introducing virtualization monitoring method, the background and significance of this paper are introduced, and the background of large-scale virtualization monitoring method is explained. Then the related technical background, including the development of network measurement and performance indicators are described. By analyzing the requirements of the virtualization monitoring method, the system is designed in detail and the sub-functions are designed in detail. Then, the method of monitoring point selection, automatic deployment and flexible adjustment of monitoring point realization process are explained. Finally, the system is tested on the large-scale network P1anetLab, and the measurement results are analyzed. The test data verify the effectiveness and stability of the virtualization monitoring method.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.06

【参考文献】

相关期刊论文 前1条

1 钱进;贺贵明;;分布式网络性能监测的探针部署方法研究[J];计算机工程;2007年07期



本文编号:2400139

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2400139.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户11139***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com