基于分布相似度迁移的关键路由设备检测
[Abstract]:Infrastructure networks (such as power networks, Internet, etc.) have become indispensable facilities for human daily life. In infrastructure network facilities, some nodes are in the key position of the network (such as trans-city, cross-border or trans-continent transfer nodes), and the load on the nodes is heavy. The performance of such key nodes affects or restricts the functions of parts of the network to a great extent. In order to improve the performance of infrastructure network, it is necessary to make effective use of the key nodes in the network. However, the key nodes are usually unknown in advance and need to be detected in real network environment. How to detect the key nodes in the Internet network is the problem to be solved in this paper. This paper focuses on the key infrastructure detection problem, and implements the Internet network behavior data acquisition system, and attempts to use machine learning technology to solve the acquired data. The main contributions of this paper are as follows: (1) A network behavior data acquisition system with a large number of servers and a wide distribution is developed. The system is composed of a hybrid P2P architecture and a stand-alone server as the console to configure and monitor the whole measurement task. All the other servers involved in the test form a P2P network to carry out the measurement work. Considering the influence of routing load balancing, the system adopts Paris-traceroute technology to design the path detection module. In the process of measurement, different communication protocols are designed for different network and computer room conditions. The applicability of the system is greatly improved. (2) A detection algorithm for Internet key routing equipment based on distributed similarity migration is proposed, the steps of which are as follows: 1. In the target domain (current route), suspicious routing devices are automatically identified by spectral clustering method. Secondly, suspicious routing devices (critical routing equipment and non-critical routing equipment) are classified by classification algorithm. For step 2, we propose a classification method based on distributed similarity transfer. This is because in the real environment, the behavior characteristics of different routing devices in different lines are usually different due to some objective factors (network status, routing equipment performance, etc.). The method based on distribution similarity migration can measure the difference of route distribution, so it can effectively migrate the label of route. Through testing on the real data set provided by Huawei, the results show that the proposed method can effectively discover the key routing equipment in the line. At the same time, this method can improve the classification results according to the distribution similarity transfer between different lines.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP393.05
【相似文献】
相关期刊论文 前10条
1 邓冠男;;聚类分析中的相似度研究[J];东北电力大学学报;2013年Z1期
2 张常有,王锋君,孙林夫;基于灰色系统理论的工程相似度分析[J];计算机应用;2000年S1期
3 孟庆锴;张剡;杨琬琪;胡裕靖;史颖欢;潘红兵;王浩;;基于分布相似度迁移的关键路由设备检测[J];计算机科学;2014年03期
4 辛颖梅;钱海峰;倪魏巍;徐冬梅;孙志挥;;关于专利类别间相似度量化方法的研究[J];科技创新导报;2009年15期
5 卫瑜,曾凡平,蒋凡;基于相似度分析的分布式拒绝服务攻击检测系统[J];计算机辅助工程;2005年02期
6 蒋占四;陈立平;罗年猛;;最近邻实例检索相似度分析[J];计算机集成制造系统;2007年06期
7 张乃洲;李石君;余伟;张卓;;使用联合链接相似度评估爬取Web资源[J];计算机学报;2010年12期
8 刘嘉;祁奇;陈振宇;惠成峰;;ESSK:一种计算点击流相似度的新方法[J];计算机科学;2012年06期
9 邹李;杜小勇;何军;;B3:图间节点相似度分块计算方法[J];计算机科学与探索;2010年09期
10 刘臻,宫鹏,史培军,Sasagawa T,何春阳;基于相似度验证的自动变化探测研究[J];遥感学报;2005年05期
相关重要报纸文章 前1条
1 刘荣霞 周婷婷 毕开顺;质量好不好“指纹”能查到[N];中国医药报;2003年
相关博士学位论文 前1条
1 李孝忠;不确定变量间的距离和相似度研究[D];天津大学;2009年
相关硕士学位论文 前7条
1 孟庆锴;基于分布相似度迁移的关键路由设备检测[D];南京大学;2014年
2 徐川;论文相似度分析系统设计[D];山东大学;2012年
3 于海英;程序代码相似度识别的研究[D];内蒙古师范大学;2006年
4 贾亮;基于神经网络和相似度分析的成本估算系统研究[D];浙江大学;2010年
5 曾鹏;语句相似度算法研究及其在题库开发中的应用[D];电子科技大学;2013年
6 杨健梅;基于相似度分析的数字多媒体被动取证研究[D];福建师范大学;2015年
7 程欣欣;心电信号QRS波检测与分类研究[D];华东理工大学;2011年
,本文编号:2443110
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2443110.html