基于贝叶斯和支持向量机的钓鱼网站检测方法
发布时间:2019-04-18 09:55
【摘要】:随着电子商务和在线交易的不断发展,钓鱼网站已成为目前最难处理的网络安全难题之一。提出了一种基于贝叶斯和不平衡支持向量机的钓鱼网站检测方法,首先提取待检测网站的URL特征,采用改进贝叶斯方法进行分类检测,如果不能明确分类,则提取该网站的页面特征,并采用不平衡支持向量机方法进行分类检测。实验结果表明,与现有方法相比,方法所需的检测时间少且能达到较高的检测准确度。
[Abstract]:With the development of e-commerce and online transaction, phishing website has become one of the most difficult network security problems. In this paper, a new phishing website detection method based on Bayesian and unbalanced support vector machines is proposed. Firstly, the URL feature of the website to be detected is extracted, and the improved Bayesian method is used to classify and detect the phishing website. Then the page features of the website are extracted and the unbalanced support vector machine (SVM) is used for classification detection. The experimental results show that, compared with the existing methods, the detection time required by the method is shorter and the detection accuracy is higher.
【作者单位】: 常州大学信息科学与工程学院;
【基金】:国家自然科学基金(No.61070121)
【分类号】:TP393.08
[Abstract]:With the development of e-commerce and online transaction, phishing website has become one of the most difficult network security problems. In this paper, a new phishing website detection method based on Bayesian and unbalanced support vector machines is proposed. Firstly, the URL feature of the website to be detected is extracted, and the improved Bayesian method is used to classify and detect the phishing website. Then the page features of the website are extracted and the unbalanced support vector machine (SVM) is used for classification detection. The experimental results show that, compared with the existing methods, the detection time required by the method is shorter and the detection accuracy is higher.
【作者单位】: 常州大学信息科学与工程学院;
【基金】:国家自然科学基金(No.61070121)
【分类号】:TP393.08
【参考文献】
相关期刊论文 前1条
1 刘万里;刘三阳;薛贞霞;;不平衡支持向量机的平衡方法[J];模式识别与人工智能;2008年02期
【共引文献】
相关期刊论文 前4条
1 赵小强;杨佳敏;;一种适应于不平衡数据集的改进TANC算法[J];兰州理工大学学报;2014年05期
2 方景龙;王万良;何伟成;;用于不平衡数据分类的FE-SVDD算法[J];计算机工程;2011年06期
3 彭晏飞;尚永刚;;基于样本不平衡与视觉多样性的超平面偏移法[J];计算机工程;2013年12期
4 王武功;马荣国;;交通事件检测的加权支持向量机算法[J];长安大学学报(自然科学版);2013年06期
相关博士学位论文 前5条
1 罗伊萍;LIDAR数据滤波和影像辅助提取建筑物[D];解放军信息工程大学;2010年
2 薛贞霞;支持向量机及半监督学习中若干问题的研究[D];西安电子科技大学;2009年
3 林智勇;基于核方法的不平衡数据学习[D];华南理工大学;2009年
4 朱霄s,
本文编号:2459956
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2459956.html