流行度演化分析与预测综述
[Abstract]:Social networks produce a lot of information at an explosive growth rate every day, but people pay limited attention to the huge amount of information. What kind of information people pay attention to and how the degree of attention to information varies with time is the evolution of the popularity of information. The evolution of popularity reflects people's concerns and the flow and dissemination of information. Modeling and predicting the evolution of the popularity of network information is helpful to the study of information dissemination and human behavior, assists the monitoring of public opinion, and brings great application and commercial value. In recent years, researchers have made fruitful research results in this area, but there is still a lack of a summary of these results. This paper systematically reviews the main work of the evolution of network information popularity, and combs the analysis and prediction methods, models and development context. This paper first expounds the characteristics of epidemic evolution qualitatively and quantitatively, introduces how to quantify the many factors that affect the evolution of epidemic degree, classifies and summarizes them, and then classifies the existing modeling and prediction methods into three categories: based on early epidemic degree, based on influencing factors, based on cascade communication, from the aspects of principle, typical results, characteristic comparison, scope of application and so on, and then classifies the existing modeling and prediction methods into three categories: based on early epidemic degree, based on influencing factors, based on cascade communication, from the aspects of principle, typical results, characteristic comparison, scope of application and so on; Finally, according to the characteristics and practical needs of the current models and methods, the research direction of the evolution of popularity in the future is pointed out.
【作者单位】: 北京科技大学计算机与通信工程学院;
【分类号】:TP393;;TP391
【相似文献】
相关会议论文 前2条
1 赵旭阳;许凤莲;李朝阳;高占国;;滹沱河湿地景观生态系统及其演化分析[A];2004·中国·武汉生态旅游论坛论文集[C];2004年
2 李杰;李涛;陈建兵;;随机系统概率演化分析中的概率配置方法[A];中国力学大会——2013论文摘要集[C];2013年
相关重要报纸文章 前1条
1 华中科技大学 范如国;基于复杂网络理论的改革开放制度演化分析[N];光明日报;2008年
相关博士学位论文 前1条
1 邓镭;面向微博新媒体的公共事件及其社会舆论分析技术研究[D];国防科学技术大学;2013年
相关硕士学位论文 前10条
1 敖其;基于分子网络的疾病演化分析[D];西安电子科技大学;2014年
2 罗例东;高速公路异常事件影响范围演化分析与预测研究[D];重庆大学;2015年
3 王晓宇;技术跨领域特征测度及知识媒介的跨领域演化分析[D];北京工业大学;2016年
4 王佩瑶;产品空间网络动态社区发现及演化分析[D];大连理工大学;2016年
5 闫志伟;企业自主创新理论的演化分析[D];山西大学;2008年
6 杨维成;基于软件仓库的源代码演化分析[D];上海交通大学;2014年
7 李新国;服务业发展、演化分析及中国的发展与对策[D];山东大学;2007年
8 王巍;基于关键词和时间点的网络话题演化分析[D];复旦大学;2009年
9 宋扬;基于模型比较的软件演化分析及同步演化方法[D];复旦大学;2013年
10 卢锁;基于复杂网络的软件系统演化分析[D];东北大学;2012年
,本文编号:2508146
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2508146.html