强负荷网络环境下的大型负载分析平台的设计与优化
发布时间:2019-08-01 07:41
【摘要】:强负荷网络环境下,传统大型负载分析平台存在资源占用率高、效率低等问题。因此,设计了基于Web服务器集群的大型负载分析平台,确保在强负荷网络环境下,通过Web服务器集群提供高可用的服务,实现负载均衡。分析了负载分析平台运行流程,基于该流程设计了负载分析平台的总体结构,平台通过接收模块接收用户申请,再采用分类模块对用户申请进行分类,通过分发模块向用户申请分配相应的进程。信息收集模块将不同服务器节点的运行状态反馈给方案模块,促使方案模块融合神经网络和遗传算法对不同节点的资源分配状态进行设置。分析模块对总体负载分析平台中的不同服务器节点进行监测,分析不同节点是否存在故障以及节点的负载是否均衡。软件设计中给出了负载分析平台模块功能结构,以及信息采集代码设计。实验结果表明,所设计负载分析平台的CPU平均利用率和任务平均处理时间都较优,并且具有较好的吞吐量。
[Abstract]:In the strong load network environment, the traditional large-scale load analysis platform has many problems, such as high resource utilization rate, low efficiency and so on. Therefore, a large load analysis platform based on Web server cluster is designed to ensure that the Web server cluster provides highly available services and realizes load balancing in the strong load network environment. The running flow of the load analysis platform is analyzed. Based on this process, the overall structure of the load analysis platform is designed. The platform receives the user application through the receiving module, then uses the classification module to classify the user application, and distributes the corresponding process to the user through the distribution module. The information collection module feedback the running state of different server nodes to the scheme module, which urges the scheme module to integrate neural network and genetic algorithm to set the resource allocation state of different nodes. The analysis module monitors the different server nodes in the overall load analysis platform, and analyzes whether there are faults in different nodes and whether the load of the nodes is balanced. In the software design, the function structure of the load analysis platform module and the design of the information collection code are given. The experimental results show that the average utilization rate of CPU and the average processing time of tasks are better and the throughput of the designed load analysis platform is better.
【作者单位】: 玉林师范学院;
【基金】:国家自然科学基金面上项目(20719662) 广西壮族自治区技术研究项目:网络入侵容忍理论及应用技术研究(自筹项目)(2013LX112) 玉林师范学院校级课题:基于数据挖掘的电商企业客户关系管理应用研究(2014YJYB02)
【分类号】:TP393.0
[Abstract]:In the strong load network environment, the traditional large-scale load analysis platform has many problems, such as high resource utilization rate, low efficiency and so on. Therefore, a large load analysis platform based on Web server cluster is designed to ensure that the Web server cluster provides highly available services and realizes load balancing in the strong load network environment. The running flow of the load analysis platform is analyzed. Based on this process, the overall structure of the load analysis platform is designed. The platform receives the user application through the receiving module, then uses the classification module to classify the user application, and distributes the corresponding process to the user through the distribution module. The information collection module feedback the running state of different server nodes to the scheme module, which urges the scheme module to integrate neural network and genetic algorithm to set the resource allocation state of different nodes. The analysis module monitors the different server nodes in the overall load analysis platform, and analyzes whether there are faults in different nodes and whether the load of the nodes is balanced. In the software design, the function structure of the load analysis platform module and the design of the information collection code are given. The experimental results show that the average utilization rate of CPU and the average processing time of tasks are better and the throughput of the designed load analysis platform is better.
【作者单位】: 玉林师范学院;
【基金】:国家自然科学基金面上项目(20719662) 广西壮族自治区技术研究项目:网络入侵容忍理论及应用技术研究(自筹项目)(2013LX112) 玉林师范学院校级课题:基于数据挖掘的电商企业客户关系管理应用研究(2014YJYB02)
【分类号】:TP393.0
【相似文献】
相关期刊论文 前10条
1 黄哲学;陈小军;李俊杰;王强;;面向服务的大数据分析平台解决方案[J];科技促进发展;2014年01期
2 王得燕;;以计算机专业为分析平台指导毕业生正确就业[J];科教文汇(上旬刊);2008年02期
3 成静静;喻朝新;;基于云计算的大数据统一分析平台研究与设计[J];广东通信技术;2013年01期
4 李伟坚;李溢杰;张正峰;李星南;仝晓明;;导向性场景分析平台的研究与实现[J];电信技术;2013年10期
5 师彪,于新花;企业分析系统——智能分析平台研究和新算法模型综述[J];计算机应用研究;2004年01期
6 廖琼明;银行数据统计分析平台的实现[J];中国金融电脑;2003年11期
7 黄震;黄云;;网络学习行为分析平台学习模式的设计与研究[J];软件导刊;2010年03期
8 ;Hadoop必将风靡2012年的六个理由[J];硅谷;2011年23期
9 ;智慧发现 不让大数据与我们擦肩而过[J];图书情报工作;2013年22期
10 卢彦卿;李君;赵振东;张顺颐;;网络业务流统计分析平台的设计与实现[J];电信快报;2007年07期
相关会议论文 前3条
1 陈林;程登发;田U,
本文编号:2521625
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/2521625.html