当前位置:主页 > 医学论文 > 护理论文 >

睡眠脑电自动分期方法研究

发布时间:2019-02-24 10:56
【摘要】:对睡眠分期进行研究有一定的临床和现实意义,睡眠分期在睡眠质量的评估和睡眠相关疾病的辅助治疗中都有重要的作用。传统的人工睡眠分期有它的局限性:效率低、耗时和耗费人力,因此研究自动睡眠分期具有重要的意义。脑电是分析睡眠最重要的一个生理信号,通过对睡眠脑电信号进行一定的处理,提取能表征不同睡眠期的特征参数,并借助分类器进行睡眠分期。睡眠脑电是一种复杂的、时变的非线性非平稳信号,本文通过结合非线性动力学方法样本熵和时频分析方法希尔伯特黄变换进行睡眠特征的提取。通过计算出每个睡眠片段的边际谱,并在此基础上计算各脑电节律的能量比,并结合睡眠脑电样本熵的特征,把所有这些睡眠特征作为分类器的输入,并借助台湾大学林智仁博士开发的Libsvm分类工具箱来进行睡眠分期。本文所采用的实验数据来源于MIT-BIT的PhysioBank中的Sleep-EDF数据库,选择了10个受试者的两导脑电信号进行睡眠分期的研究。本文主要把睡眠分为觉醒期、NREM 2期.NREM3期(深睡期)、NREM 1/REM(快速眼动期)这几个睡眠期。实验结果表明,通过样本熵和希尔伯特黄变换能有效获取睡眠脑电信号的睡眠特征。不同睡眠期的样本熵值之间存着一定的规律性,在非快速眼动期(NREM),随着睡眠的深入,样本熵值不断减小,在NREM 3、4期达到最小值。利用希尔伯特黄变换求得的脑电信号的边际谱在不同睡眠期具有一定的差异性的,脑电节律的能量比能够很好地表征不同的睡眠期。但是仅仅利用样本熵进行睡眠分期的效果一般,而只利用希尔伯特黄变换方法进行睡眠特征的提取,达到的睡眠分期效果较好。通过结合样本熵和希尔伯特黄变换进行睡眠特征提取,睡眠分期的效果进一步提高,比仅仅用其中一种方法的效果都要好,总体分期准确率达到了89.9%。由此可见,通过结合样本熵和希尔伯特黄变换方法作为特征提取的方法对睡眠进行分期具有比较理想的效果,同时也肯定了用脑电信号进行睡眠分期的可行性。
[Abstract]:The study of sleep staging has some clinical and practical significance. Sleep staging plays an important role in the evaluation of sleep quality and the adjuvant treatment of sleep related diseases. Traditional artificial sleep staging has its limitations: low efficiency, time consuming and labor consumption, so it is of great significance to study automatic sleep staging. EEG is the most important physiological signal to analyze sleep. By processing the sleep EEG, the characteristic parameters of different sleep periods can be extracted, and the sleep stages are carried out with the help of classifier. Sleep EEG is a kind of complex, time-varying nonlinear non-stationary signal. In this paper, the feature of sleep is extracted by combining the nonlinear dynamic method, sample entropy and time-frequency analysis method, Hilbert-Huang transform. By calculating the marginal spectrum of each sleep segment and calculating the energy ratio of each EEG rhythm, and combining with the entropy characteristics of the sleep EEG sample, all these sleep characteristics are used as the input of the classifier. And with the help of Libsvm classification toolbox developed by Dr. Lin Zhiren, University of Taiwan to stage sleep. The experimental data were obtained from the Sleep-EDF database in PhysioBank of MIT-BIT. Ten subjects were selected to study sleep stages with two conductance EEG signals. In this paper, sleep is divided into arousal, NREM 2 and NREM3 (deep sleep), NREM 1/REM). The experimental results show that the sleep characteristics of sleep EEG can be obtained effectively by sample entropy and Hilbert-Huang transform. There was a certain regularity between the entropy values of samples in different sleep periods. In the non-rapid eye movement period, the sample entropy value decreased with the deepening of sleep, and reached the minimum value in the NREM 3 / 4 phase. The marginal spectrum of EEG obtained by Hilbert-Huang transform is different in different sleep periods, and the energy ratio of EEG rhythm can well characterize different sleep periods. But the effect of only using sample entropy to stage sleep is general, but only using Hilbert-Huang transform to extract sleep features, the effect of sleep staging is better. By combining sample entropy and Hilbert-Huang transform to extract sleep features, the effect of sleep staging is further improved, which is better than that of only one of the methods, and the overall accuracy of stage is 89.9. It can be seen that the method of sample entropy and Hilbert-Huang transform is an ideal method for sleep staging, and the feasibility of using EEG for sleep staging is also confirmed.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R740;TN911.7

【相似文献】

相关期刊论文 前10条

1 葛丁飞;李小梅;;心电信号多周期融合特征提取和分类研究[J];中国生物医学工程学报;2006年06期

2 张绍武;潘泉;赵春晖;程咏梅;;基于加权自相关函数特征提取法的多类蛋白质同源寡聚体分类研究[J];生物医学工程学杂志;2007年04期

3 薛建中,郑崇勋,闫相国;快速多变量自回归模型的意识任务的特征提取与分类[J];西安交通大学学报;2003年08期

4 杨晓敏,罗立民;白细胞自动分类中的特征提取和分析[J];北京生物医学工程;1992年04期

5 王双维;樊晓平;廖志芳;;一种激光诱导荧光光谱特征提取新方法[J];计算机工程与应用;2008年12期

6 杜军平,涂序彦;计算机图像处理技术在舌像特征提取中的应用[J];中国医学影像技术;2003年S1期

7 游佳;陈卉;;数字图像中血管的分割与特征提取[J];生物医学工程与临床;2011年01期

8 谢轶峰;;乳腺超声图像肿瘤特征提取与肿瘤分类[J];中外医疗;2013年16期

9 吴泽晖,吴星;医学图象的边缘特征提取[J];海南师范学院学报(自然科学版);2003年03期

10 杨晓敏,罗立民,,韦钰;血液白细胞计算机分类中的特征提取研究[J];应用科学学报;1994年02期

相关会议论文 前10条

1 尚修刚;蒋慰孙;;模糊特征提取新算法[A];1997中国控制与决策学术年会论文集[C];1997年

2 潘荣江;孟祥旭;杨承磊;王锐;;旋转体的几何特征提取方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年

3 薛燕;李建良;朱学芳;;人脸识别中特征提取的一种改进方法[A];第十三届全国图象图形学学术会议论文集[C];2006年

4 杜栓平;曹正良;;时间—频率域特征提取及其应用[A];2005年全国水声学学术会议论文集[C];2005年

5 魏明果;;方言比较的特征提取与矩阵分析[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

6 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 黄先锋;韩传久;陈旭;周剑军;;运动目标的分割与特征提取[A];全国第二届信号处理与应用学术会议专刊[C];2008年

8 秦建玲;李军;;基于核的主成分分析的特征提取方法与样本筛选[A];2005年中国机械工程学会年会论文集[C];2005年

9 刘红;陈光

本文编号:2429488


资料下载
论文发表

本文链接:https://www.wllwen.com/huliyixuelunwen/2429488.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户37f8d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com