带有屈曲约束支撑的摇摆墙框架结构抗震性能研究
本文关键词: 屈曲约束支撑 摇摆墙 抗震性能 刚度比 高阶模态 动力分析 出处:《东南大学》2015年硕士论文 论文类型:学位论文
【摘要】:目前屈曲约束支撑(BRB)框架的设计方法往往控制参数较多,设计过程较为复杂,其中最大的难点在于无法切实控制所有楼层的BRB同时屈服并避免薄弱层的出现。而在摇摆墙框架结构中,摇摆墙基本不提供抗侧刚度和耗能能力。基于屈曲约束支撑框架结构设计的复杂性和摇摆墙框架结构的刚度需求和耗能需求,本文提出带有BRB的摇摆墙框架结构体系,既可以看作是利用摇摆墙控制屈曲约束支撑框架结构的变形模式以保证所有BRB充分发挥作用,也可以理解为BRB为摇摆墙框架结构提供抗侧刚度和耗能能力。针对该结构体系本文主要进行了以下研究:(1)分析了摇摆杆件的动力特性及摇摆墙框架结构的受力特性。将摇摆杆件视作独立的弹性构件,讨论了其时程分析方法,提出了几种适用的模态求解方法,为后续针对摇摆杆件的分析提供依据和方法。基于振型分解法讨论了摇摆杆件的恢复力模型,进而通过受迫谐振响应分析,证明摇摆杆件的内力受高阶模态影响较大,而位移由一阶模态控制。对于摇摆墙框架结构,根据均匀离散模型的计算推导和算例分析,提出了刚度比等主要设计参数。分析了摇摆墙对结构抗侧刚度影响,当框架层刚度和高度分布均匀时,摇摆墙的加入对原框架基底剪力与顶点位移的比值影响不大,否则会有影响。摇摆墙在结构中发挥了传递抗侧刚度的作用,从而提高结构整体抗侧能力。(2)提出了带有BRB的摇摆墙框架结构体系。首先阐述了该结构体系的设计理念并分析了其特点和优势,通过离散模型的计算推导和算例分析,提出转动刚度比等主要设计参数。通过振型分解法讨论了底部带有BRB的铰支墙(HWBB)的受迫谐振响应并与摇摆杆件作比较,表明随着转动刚度比的增大,一阶模态对内力的影响增大,而高阶模态对位移的影响增大。基于Benchmark模型,比较了该体系与框架、摇摆墙框架、框剪等结构的抗震性能,结果表明该体系在BRB屈服前类似框剪结构,BRB提供附加抗侧刚度并通过墙体进行传递,BRB屈服后结构发生摇摆,墙体控制侧移模式,BRB通过滞回耗能,充分发挥了结构各部分抗震能力。(3)采用动力分析方法研究了底部带有BRB的铰支墙框架(HWBBF)结构体系中的三种刚度比(刚度比、转动刚度比和屈服后刚度比.)。无论是摇摆墙框架结构还是HWBBF结构,当刚度比较大时,结构侧移模式都更趋向于墙体,因此能得到很好的控制。对于刚度比很大的HWBBF结构,随着转动刚度比的增大,结构侧移模式逐渐由摇摆墙向剪力墙转变,基底剪力和中部弯矩增大,而顶点位移和层间位移角峰值变化较小。当不考虑P-△效应时,该体系的弹塑性模型与对应的弹性模型基本符合等位移原则。当考虑P-△效应时,屈服后刚度越小,顶点位移响应越大,残余位移也越大,出现偏振现象,但屈服后刚度比达到0.1时,结构响应几乎不受P-△效应影响。(4)研究了HWBBF结构设计方法。根据几何关系推导了BRB和HWBBF的抗震能力基本要素(承载力、刚度、位移、延性)之间的转换关系,通过此转换关系可以将结构设计简化为构件设计。对其中的延性关系进行了分析和验证,表明了本结构整体延性不仅与BRB延性有关,还受转动刚度比影响。BRB屈服后墙体底部弯矩不再增长,但墙体中部弯矩仍增长显著。根据屈服后墙体弯矩的分布特点,提出了一种计算墙体弯矩的叠加方法,并进行了验证和应用,结果表明该方法可以简便但较准确地估计墙体弯矩。
[Abstract]:At present, the BRB (BRB) design method of frame are control parameters, the design process is complex, the biggest difficulty lies in unable to effectively control all floors of the BRB at the same time yield and avoid the weak layer. While in the rocking wall frame structure, rocking wall basically do not provide lateral stiffness and energy dissipation capacity. The degree of demand and the energy demand of the BRB and the complexity of rocking wall frame structure frame structure design based on the proposed rocking wall frame structure system with BRB, which can be regarded as the rocking wall frame structure to control the deformation mode of buckling restrained brace to ensure that all give full play to the role of BRB, BRB can also be understood as for rocking wall frame structure to provide lateral stiffness and energy dissipation capacity. The structure of this paper are as follows: (1) analysis of swing rod dynamic characteristic and shake The stress characteristics of pendulum wall frame structure. The swing rod as independent elastic component, discussed the time history analysis method, puts forward several methods for modal analysis, to provide a basis and method for the follow-up analysis of swing bar. The modal decomposition method to discuss the rocking bar based on the restoring force model, and the forced harmonic response analysis, prove the swing member forces by higher modes influence, while the displacement by a modal control. The rocking wall frame structure, according to the analysis and numerical example calculation uniform discrete model, the stiffness ratio of the main design parameters. Analysis of the rocking wall lateral stiffness the influence on the structure, when the frame layer height and stiffness distribution, the rocking wall has little influence on the ratio of the original frame of base shear and top displacement, otherwise it will affect the rocking wall in the structure. The lateral stiffness of transfer play The degree of the effect, so as to improve the lateral capacity. (2) proposed the rocking wall frame structure system with BRB. First elaborated the design concept of the structural system and analyzes its characteristics and advantages, through the calculation of discrete model and example analysis, the rotational stiffness ratio of the main design parameters. The hinged at the bottom of the wall with BRB based on modal decomposition method (HWBB) forced resonant response and rocking bar comparison indicated that along with the rotational stiffness ratio increases, increasing the influence of the first mode of internal force, and the effect of higher order modes of displacement increases. Based on the Benchmark model, comparison the system and the frame rocking wall frame, seismic performance of frame shear structure, the results show that the BRB yield similar before the frame structure of the system, BRB provides additional lateral stiffness and pass through the wall, BRB yield structure of swing, the control side wall Shift mode, BRB through the hysteretic energy, give full play to the various parts of the structure seismic capacity. (3) the hinged frame wall dynamic analysis method to study the bottom with BRB (HWBBF) in the structure system of three kinds of stiffness ratio (stiffness ratio, stiffness ratio and yield stiffness ratio.) no theory is the rocking wall frame structure or HWBBF structure, when the stiffness is large, the structure lateral displacement mode tend to be more walls, so it can be well controlled. The stiffness ratio of HWBBF structure, with the rotational stiffness ratio increases, the structure lateral displacement mode has gradually changed from the wall to the swing shear wall, base shear and central moment increases, and vertex displacement and angular displacement between layers peak changed little. When not considering the effect of P- Delta, elastic model of elastic plastic model and the corresponding system accords with the principle of equal displacement. When considering the P- delta effect, yield stiffness is smaller, the peak displacement The greater the response, the residual displacement increases, appear polarization phenomenon, but the post yield stiffness ratio reaches 0.1, the response of the structure is almost not affected by the P- delta effect. (4) studied the HWBBF structure design method. According to the geometric relations are basic elements of BRB and HWBBF (seismic capacity of bearing capacity and stiffness. Displacement, ductility) relationship between conversion, through this conversion can be simplified as a component design. The structure design of the relationship between ductility is analyzed and verified, indicating that the overall structure is not only related to the ductility ductility of BRB, but also by the rotational stiffness of the wall at the bottom of the moment is no longer growing effect than.BRB yield, but in the middle of the wall the moment still increased significantly. According to the distribution characteristics of the wall bending moment after yielding, a method is proposed for calculating the wall bending moment superposition method, and verified and applied results show that this method is simple but can accurately estimate the wall bending moment.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU352.11
【参考文献】
相关期刊论文 前10条
1 杨树标;谢波涛;余丁浩;魏志涛;;内嵌式框架-摇摆墙结构振动台试验研究分析[J];建筑科学;2014年09期
2 徐佳琦;吕西林;;基于能量的框架-摇摆墙结构与框架-剪力墙结构地震反应分析对比[J];建筑结构;2013年S2期
3 刘桂;吴京;;屈曲约束支撑刚度与屈服力匹配关系研究[J];世界地震工程;2013年02期
4 杜永峰;武大洋;;一种轻型消能摇摆架近断层地震响应减震分析[J];土木工程学报;2013年S2期
5 梁仁杰;吴京;王春林;雷雪辰;;考虑P-Δ效应的结构地震倒塌及影响因素分析[J];建筑结构学报;2013年02期
6 梁仁杰;吴京;王春林;;P-Δ效应下滞回特征对结构抗倒塌能力的影响[J];东南大学学报(自然科学版);2013年01期
7 曹海韵;潘鹏;吴守君;叶列平;曲哲;;框架-摇摆墙结构体系中连接节点试验研究[J];建筑结构学报;2012年12期
8 陆伟东;;基于MATLAB的地震模拟振动台试验的数据处理[J];南京工业大学学报(自然科学版);2011年06期
9 曲哲;和田章;叶列平;;摇摆墙在框架结构抗震加固中的应用[J];建筑结构学报;2011年09期
10 周颖;吕西林;;摇摆结构及自复位结构研究综述[J];建筑结构学报;2011年09期
相关博士学位论文 前1条
1 曲哲;摇摆墙—框架结构抗震损伤机制控制及设计方法研究[D];清华大学;2010年
相关硕士学位论文 前5条
1 余丁浩;基于动力分析的框架—摇摆墙结构受力特性研究[D];河北工程大学;2014年
2 武大洋;近场地震作用下轻型自复位消能摇摆刚架减震性能分析[D];兰州理工大学;2013年
3 赵瑛;防屈曲支撑框架设计理论研究[D];清华大学;2009年
4 贾佰科;屈曲约束支撑高层钢结构的抗震性能及设计方法研究[D];西安建筑科技大学;2008年
5 刘建彬;防屈曲支撑及防屈曲支撑钢框架设计理论研究[D];清华大学;2005年
,本文编号:1478344
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1478344.html