高层密集框桁架仓储结构力学性能研究
本文选题:高层密集框桁架仓储结构体系 + 背拉支撑系统 ; 参考:《东南大学》2015年硕士论文
【摘要】:密集框桁架仓储结构横向表现为桁架结构、纵向表现为“弱框架”结构,其具有构件密集的特点。广泛应用于物流存储的组装式货架为该体系的典型代表。在课题组前期研究的基础上,本文重点研究带背拉支撑的高层组装式货架结构体系,其间加入多层结构分析结果,以作对比。首先介绍了新型整体式节点货架的构成特点、结构作用与传递路径,对比分离式与整体式节点构成特点、原有背拉体系与新型背拉体系布置形式;接着,研究隔撑短梁竖向偏心、水平支撑系统、背拉数量的影响;然后,基于节点刚度变化对单根抱扣梁、高层无侧移结构、多层有侧移结构进行整体性能分析,给出合适的节点刚度范围并验证现有整体式节点刚度的合理性;在此基础上,分析不同阻尼比对于结构性能影响;最后,对单根抱扣梁最佳工作荷载参数化分析,在常用工作荷载下获得多卷边柱截面选型表,并给出整体式节点货架经济性指标。得到主要结论如下:1、柱顶侧移与层间侧移角随隔撑短梁偏心增大而增大,隔撑短梁偏心布置使结构不安全,隔撑短梁应尽可能不偏心或少偏心;2、为保证货架外侧立柱能满足强支撑条件,需布置背拉体系且在结构各层设置水平支撑;3、背拉数量增加对结构整体X向平动限制明显,整体侧移量与层间侧移角下降,基于经济性考虑每4-7列柱片设置1道背拉,即1道背拉影响7m-14m范围;4、采用增强背拉区立柱并优化其他立柱截面这一措施,可降低结构侧移量与用钢量,标准榀较单榀降低效果更显著;5、对于高层无侧移结构与多层有侧移结构,节点刚度的增加使结构基本周期、结构柱顶侧移、最大层间侧移角、梁挠度、柱应力比减小,有侧移体系柱应力减小较无侧移体系明显,节点刚度为3×10^8N·mm/rad时较合适;6、整体式节点货架较分离式节点货架柱顶侧移、最大层间侧移角、钢梁挠度、梁、柱应力比均有减小;7、阻尼比0.05较0.035,货架体系结构柱顶侧移量、最大层间侧移角、柱应力比、基底剪力减小;8、高层无侧移整体式节点货架节省用钢量随抗震设防烈度及特征周期值的增加呈阶梯状增加,最高可达33.8%;多层有侧移整体式节点货架节省用钢量随着结构承载的增加而增加,最高可达30.3%。
[Abstract]:The storage structure of dense frame truss is shown as truss structure in transverse and "weak frame" structure in longitudinal direction, which has the characteristics of dense structure. The assembled shelf, which is widely used in logistics storage, is a typical representative of this system. On the basis of the previous research of the research group, this paper focuses on the research of the high-rise assembled shelf structure system with back pull support, and adds the results of the multi-layer structure analysis to make a comparison. This paper first introduces the structure characteristics, structure function and transfer path of the new integral node shelf, compares the structural characteristics of the separate and integral joints, the arrangement of the original backpull system and the new backpull system, and then the layout of the original backpull system and the new backpull system. The effects of vertical eccentricity, horizontal bracing system and back pull quantity on short spacer beam are studied. Then, based on the change of node stiffness, the overall performance of single clasped beam, high rise structure without lateral displacement and multi-story lateral moving structure is analyzed. The proper joint stiffness range is given and the rationality of the existing integral joint stiffness is verified. On this basis, the effects of different damping ratios on the structure performance are analyzed. Finally, the parameterized analysis of the optimal working load of a single clasp beam is made. The cross-section selection table of multi-crimped column is obtained under common working load, and the economic index of integral joint shelf is given. The main conclusions are as follows: (1) the angle between column top and interlayer lateral displacement increases with the increase of eccentricity of spacer short beam, and the eccentric arrangement of spacer short beam makes the structure unsafe. The short beam should be as uneccentric or less eccentric as possible. In order to ensure that the column on the outside of the shelf can meet the strong supporting conditions, it is necessary to arrange the backpull system and install horizontal support in each layer of the structure. The increase in the number of back pull obviously limits the overall X-direction translation of the structure. The overall lateral displacement and the angle of interlaminar lateral shift are decreased. Based on the economic considerations, one back pull is set for every 4-7 column sheet, that is, one back pull affects the 7m-14m range. The method of strengthening the back pull area column and optimizing the cross section of other columns is adopted. It can reduce the amount of lateral displacement and steel used in the structure, and the reduction effect of the standard model is more remarkable than that of the single one. For the high-rise structure with no lateral displacement and multi-story lateral displacement, the increase of node stiffness makes the basic period of the structure, the top of the structure column sideways and the maximum angle of lateral displacement between layers. The beam deflection and column stress ratio decrease, the column stress of the system with lateral displacement decreases more obviously than that of the non-lateral displacement system, the node stiffness is 3 脳 10 ^ 8N mm/rad, the integral joint shelf is more suitable to move sideways than the separated joint shelf top, the maximum interlayer lateral displacement angle, the deflection of steel beam, the maximum interlayer lateral angle, the steel beam deflection and the beam, The ratio of column stress to column stress decreased by 7, damping ratio was 0.05 to 0.035, column top displacement, maximum interlaminar displacement angle, column stress ratio, The base shear force is reduced by 8, and the steel saving amount of the non-lateral integral joint shelf increases with the increase of seismic fortification intensity and characteristic period value, and increases in step shape with the increase of seismic fortification intensity and characteristic period value. The maximum amount of steel saved by the multi-layer side-shift integral joint shelf increases with the increase of the structure load, and the maximum is 30.3%.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU973
【相似文献】
相关期刊论文 前10条
1 王桂芳;用力矩一次分配法直接求有侧移刚架的端矩[J];土木工程学报;1958年06期
2 吴世伟;;用不平衡反力总值法分析有侧移的平面刚架[J];华东水利学院学报(建筑力学分册);1963年01期
3 隋允康,徐磊;一个三步交错的优化方法[J];大连工学院学报;1984年02期
4 陈府祥;;复杂排架的侧移和影响矩阵[J];固体力学学报;1985年02期
5 杨荫曾;;论侧移分配[J];内蒙古农牧学院学报;1986年06期
6 朱杰江,徐道远,王颍;框架侧移的连续化模型分析[J];河海大学学报(自然科学版);2001年01期
7 刘书智;蒋琳;杨占峰;;框架结构顶部侧移的简化计算[J];建筑结构;2006年10期
8 张洪清;;关于用卡尼法计算有侧移多层刚架收敛速度的初步探讨[J];华北水利水电学院学报;1983年01期
9 许报力;有侧移刚架和无侧移刚架的统一计算[J];四川建筑科学研究;1985年04期
10 石嘉元;;柱轴向变形引起高层框架水平侧移的分析[J];建筑结构;1988年03期
相关会议论文 前10条
1 刘光好;赵广鉴;;刚架参考弯矩图解法的侧移问题[A];第十一届全国结构工程学术会议论文集第Ⅰ卷[C];2002年
2 潘建伍;;用数字特征微分方程计算多层织造厂房侧移量[A];第十二届全国结构工程学术会议论文集第Ⅱ册[C];2003年
3 高华东;潘东旭;魏建文;樊绍峰;;混沌理论与支持向量机相结合的侧移预测模型[A];第三届全国岩土与工程学术大会论文集[C];2009年
4 徐伟良;蒋菡;李辉;;无侧移柔性连接钢框架的简化分析[A];第九届全国结构工程学术会议论文集第Ⅱ卷[C];2000年
5 陈希民;李长慧;施颖;张孚珩;;箱形框架的双向侧移分析[A];第14届全国结构工程学术会议论文集(第一册)[C];2005年
6 徐彬;梁启智;;奇异函数建立侧移刚度矩阵的新方法[A];第十届全国结构工程学术会议论文集第Ⅲ卷[C];2001年
7 王立明;高广运;郭院成;;单支点桩锚支护结构的侧移计算[A];上海软土地区深基坑技术新进展研讨会论文集[C];2005年
8 王文浒;景晓冬;;关于锅炉构架中有侧移框架无侧移框架及其侧移的探讨[A];第一届中国钢结构协会锅炉钢结构分会会议暨第一届锅炉钢结构学术研讨会论文集[C];2000年
9 邵皖予;董朝旭;;高层建筑结构在水平荷载作用下的侧移计算[A];河南省土木建筑学会2009年学术年会论文集[C];2009年
10 查晓雄;王璐璐;钟善桐;;构建多层集装箱改造房的方法及确保其安全性实用公式推导[A];第二届全国工程结构抗震加固改造技术交流会论文集[C];2010年
相关博士学位论文 前1条
1 罗桂发;钢支撑和框架的弹塑性抗侧性能及其协同工作[D];浙江大学;2011年
相关硕士学位论文 前10条
1 蒋千军;高铁路基侧移自动检测系统的设计与实现[D];西南交通大学;2015年
2 谈龙;高层密集框桁架仓储结构力学性能研究[D];东南大学;2015年
3 王垒;肛瘘侧移黏膜/皮肤瓣保留括约肌术的临床研究[D];南京中医药大学;2016年
4 刘小花;多高层钢框架二阶侧移限值合理取值的研究[D];湖南大学;2008年
5 陈筱妹;考虑柱端时变侧移的约束混凝土柱耐火性能研究[D];华南理工大学;2012年
6 蔡潇霄;立体停车结构基于整体侧移的构件截面确定方法[D];湖南大学;2013年
7 林鹏;钢框架结构二阶侧移计算简化方法及二阶侧移限值合理取值的初步探讨[D];湖南大学;2006年
8 韩玉来;转换层层间侧移角比界限值范围分析[D];哈尔滨工程大学;2004年
9 寇素霞;考虑竖向荷载影响的框架层间弹性侧移计算[D];东北林业大学;2004年
10 王琨;某钢结构仿古塔中支撑的抗侧移性能及经济性分析[D];太原理工大学;2012年
,本文编号:1813509
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1813509.html