麻栎和栓皮栎遗传多样性的AFLP分析及速生家系选择
发布时间:2018-04-25 17:49
本文选题:麻栎 + 栓皮栎 ; 参考:《山东农业大学》2017年硕士论文
【摘要】:栎属约有(Quercus L.)450种,分布范围非常广泛,是重要的集观赏价值、经济价值、生态价值为一体的种属。我省为麻栎(Quercus acutissima)和栓皮栎(Quercus variabilis)主要分布区之一。近些年,随着人类生产活动,原生的麻栎和栓皮栎遭到破坏,本文通过搜集山东省27个麻栎半同胞家系和19个栓皮栎半同胞家系种子并培育成林。根据AFLP(Amplified fragment length polymorphism)分子标记技术的试验结果,分析麻栎和栓皮栎,二者各自的遗传多样性、遗传结构和亲缘关系情况;对其进行1年生、5年生和8年生苗、叶生长指标测定,选育出优势速生家系,为麻栎、栓皮栎种质资源评价、保护以及利用提供理论依据。试验结果如下:1.麻栎的遗传多样性分析:从64对引物组合中,选取8对重复性好、多态性高的引物组合,结果显示,72份种质在8对引物中共扩增出1440条谱带,多态带比例为100%。平均观测的等位基因数Na=2.0、平均有效等位基因数Ne=1.2638、平均Nei's基因多样性H=0.1731和平均Shannon信息指数I=0.2871,表明72份麻栎种质之间的遗传多样性较高;72份种质之间的遗传一致度(In)介于0.3048-0.7597。来自同一家系的单株,大都首先聚在一起。72份麻栎种质中有61份种质产生特异性条带,通过特异性条带可鉴别出84.7%的种质,并且产生特异性条带数为209个,全部是单态带,没有缺失带。麻栎9个半同胞家系的多态带比例从42.17%到54.29%不等,平均多态带比例为48.72%。多态带比例由大到小为:石榴园32号蒙阴50号地震台39号龙口48号三阳观22号莱阳52号东泊子43号红门16号徂徕山46号。2.麻栎的遗传结构:9个半同胞家系间的遗传分化度Gst=0.2478,基因流(Nm)为1.6517,表明遗传变异主要来自于家系内部且不同家系间有一定的基因交流。9个半同胞家系的遗传一致度(In)介于0.9082~0.9808之间,平均值为0.9507;遗传距离(D)介于0.0194-0.0753之间,平均值为0.0493,不同家系间遗传相似性较大;在遗传距离D=0.044处,可将9个麻栎半同胞家系分成4类。用Metal检验遗传距离(D)与地理位置之间的关系,可得出二者不存在相关性(r=0.1133,p=0.7169)。3.栓皮栎的遗传多样性分析:从64对引物组合中,选取8对多态性较好、重复率高的引物组合,结果显示,82份种质在8对引物中共扩增出1438条谱带,多态带比例为100%。平均观测的等位基因数Na=2.0、平均有效等位基因数Ne=1.2903、平均Nei’s基因多样性H=0.1868和平均Shannon信息指数I=0.3050,表明栓皮栎半同胞家系之间的遗传多样性处于较高水平;82份种质之间的遗传一致度(In)介于0.3229-0.7010。来自同一家系的单株,并非首先聚在一起,说明栓皮栎家系内存在一定的变异。82份栓皮栎种质中,产生特异性条带的有60份种质,通过特异性条带可以检测出73.17%的种质。82份种质共检测出176个特异性条带,全部是单态带,没有缺失带,12个半同胞家系的多态带比例介于36.61%-59.81%之间,平均多态带比例为47.92%。各家系的遗传多样性按多态带大小排序可以得出:崂山49号平度51号昆嵛山54号费县45号石榴园7号红门5号海阳55号三阳观26号邹城47号沂源44号地震台9号普照寺11号。4.栓皮栎的遗传结构:12个半同胞家系间的遗传分化度(Gst)为0.2671,基因流(Nm)为1.3860,表明遗传变异主要来自于家系内部且不同家系间有一定的基因交流。12个半同胞家系的遗传一致度(In)介于0.9178~0.9857之间,平均值为0.9461;遗传距离介于0.0144-0.0861(PD51和DZ9)之间,平均0.0509,不同家系间遗传相似性较大;在遗传距离(D)为0.05处被12个栓皮栎半同胞家系分成4类。用Metal检验检测栓皮栎遗传距离(D)与地理位置之间的关系,得出二者之间不存在相关性(r=0.1287,p=0.8428)。5.麻栎速生家系的选择:通过测定并分析一年生、五年生和八年生麻栎的生长指标,利用统计软件SAS 9.2分别对数据进行聚类分析,初步在黄岛麻栎27个麻栎半同胞家系中选择速生家系,泰安三阳观24号(SY24)、泰安三阳观29号(SY29)、泰安徂徕山46号(CL46)和烟台莱阳52号(LY52)共计4个速生半同胞家系。6.栓皮栎速生家系的选择:通过测定并分析一年生、五年生和八年生栓皮栎的生长指标,利用统计软件SAS 9.2对数据进行聚类分析,初步在黄岛栓皮栎19个半同胞家系中选择速生家系,泰安三阳观23号(SY23)、泰安石榴园35号(SL35)和泰安地震台37号(DZ37),共计3个速生半同胞家系。
[Abstract]:The 450 species of Quercus (Quercus L.) are widely distributed. It is an important species of ornamental value, economic value and ecological value. Our province is one of the main distribution areas of Quercus variabilis (Quercus acutissima) and Quercus variabilis (Quercus variabilis). In recent years, with human production activities, the original Quercus and Quercus variabilis were destroyed. According to the results of AFLP (Amplified fragment length polymorphism) molecular marker technique, the genetic diversity, inheritance structure and relationship between the two people of 27 semi sib families and 19 semi compatriot families of Quercus variabilis and Quercus variabilis families in Shandong were collected and cultivated for 1 years and 5 years. The results of genetic diversity analysis of Quercus variabilis and Quercus variabilis: 1. genetic diversity analysis of Quercus variabilis: from 64 pairs of primer combinations, 8 pairs of primer combinations with good reproducibility and high polymorphism were selected from 64 pairs of primer combinations. The results showed that 72 germplasms were in 8. 1440 bands were amplified by the primers, and the number of alleles was Na=2.0, the average effective allele number was Ne=1.2638, the average Nei's diversity H=0.1731 and the average Shannon information index I=0.2871, indicating that the genetic diversity among the 72 Quercus germplasms was higher, and the genetic consistency between 72 Germplasms (In). Among the single strains of 0.3048-0.7597. from the same family, 61 of the Germplasms of Quercus Quercus were first gathered together to produce specific bands, and 84.7% of the germplasms were identified by specific bands, and the number of specific bands was 209, all of which were mono bands and no missing bands. The proportion of polymorphic bands in the 9.5 siblings of Quercus Quercus from 4 was 4. From 2.17% to 54.29%, the average polymorphic band ratio of 48.72%. polymorphic bands ranged from large to small: genetic structure of Quercus Quercus.2., No. 16, Laiyang 52, No. 39, No. 39, No. 48, No. 39, Longkou No. 22, No. 52, No. 22, No. 52, No. 22, No. 52. The genetic variation is mainly from the family family and the genetic consistency (In) of.9 half sib families with certain genetic exchanges between families is between 0.9082~0.9808, the average value is 0.9507, the genetic distance (D) is between 0.0194-0.0753, the average value is 0.0493, the genetic similarity between different families is larger, and the genetic distance D=0.044, can be found. The relationship between genetic distance (D) and geographical location of 9 Quercus families of 9 Quercus is divided into 4 categories. Genetic diversity analysis of Quercus variabilis in two non existence (r=0.1133, p=0.7169).3. can be obtained. From 64 pairs of primer combinations, 8 pairs of primer combinations with good polymorphism and high repetition rate are selected. The results show that 82 germplasms are 8 pairs. 1438 bands were amplified by primers, and the number of alleles was Na=2.0, the average effective allele number was Ne=1.2903, the average Nei 's gene diversity H=0.1868 and the average Shannon information index I=0.3050, indicating that the remains diversity between the half sib families of Quercus variabilis was at a high level, and between the 82 copies of germplasm. The genetic consistency (In) was between the single strains of 0.3229-0.7010. from the same family, and it was not first gathered together. It showed that 60 germplasm of specific bands were produced in the germplasm of Quercus variabilis family in a certain variant.82 Quercus variabilis, and 176 specific bands could be detected by the specific bands of 73.17% Germplasm from the germplasm of the germplasm. All mono belts, no missing bands, the proportion of polymorphic bands in 12.5 sib families is between 36.61%-59.81%, and the average polymorphic band ratio is 47.92%.. The genetic diversity of the families of each family can be classified according to the polymorphic Band Size: Laoshan 49, No. 51, Kunyu Mountain 54, No. 7, No. 45, 7 Red Gate of pomegranate garden No. 45, 55 of Haiyang 55, and Zoucheng 47. 47 Genetic structure of Quercus variabilis (Quercus variabilis).4., No. 11, No. 9 Yiyuan seismological station, No. 11, the genetic differentiation degree (Gst) of 12.5 compatriots and gene flow (Nm) is 1.3860, indicating that genetic variation mainly comes from the family and the genetic consistency of.12 half sib families with a certain gene exchange between different families (In) is between 0.9178~0.9857 The average value was 0.9461, the genetic distance was between 0.0144-0.0861 (PD51 and DZ9), an average of 0.0509, and the genetic similarity between different families was larger. The genetic distance (D) was divided into 4 classes of 12 Quercus variabilis families. The relationship between the genetic distance of Quercus variabilis (D) and geographical location was detected by Metal test, and there was no existence between the two. The selection of fast growing family of Quercus Quercus (r=0.1287, p=0.8428).5.: by measuring and analyzing the growth indexes of annual, five year and eight year old oak, using statistical software SAS 9.2 to cluster analysis of data respectively, select the fast-growing family, Tai'an San Yang 24 (SY24), Tai Ansan, Tai Ansan, 27 Quercus of Quercus Quercus Yang Guan 29 (SY29), 4 fast-growing and half sibling families of Yantai, Yantai and Laiyang 52 (LY52), Yantai, a total of 4 fast-growing family lines of Quercus variabilis (Quercus variabilis). By measuring and analyzing the growth indices of the annual, five and eight year old Quercus variabilis, the data were cluster analyzed by the statistical software SAS 9.2, initially in the Quercus variabilis 19.5 of Huangdao. Among the siblings, there are 3 fast-growing half sib families, including Sanyang Guan 23 (SY23), Tai'an 35 (SL35) and Tai'an Seismological Station 37 (DZ37).
【学位授予单位】:山东农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S792.18
【参考文献】
相关期刊论文 前10条
1 贾晨;张时林;段爱国;罗建勋;刘芙蓉;杨马进;;杉木第3代种子园半同胞家系子代苗期测定与优良家系选择[J];四川林业科技;2016年06期
2 刘克俭;王江;张明;姚智雪;尚慧敏;刘立君;;长白落叶松优良半同胞家系与无性系选择技术[J];吉林林业科技;2016年06期
3 王萱;刘晓静;邢世岩;孔倩倩;张艳辉;孙立民;高燕;;中国部分古银杏资源遗传多样性的AFLP分析及核心种质的构建[J];园艺学报;2016年02期
4 贾志远;葛晓敏;唐罗忠;仲灿;史琴巧;;淹水胁迫对麻栎苗木生长和生理的影响[J];江苏林业科技;2015年04期
5 国宏;吴月亮;刘明国;董胜君;张欣;;山杏强化育种及子代测定[J];辽宁林业科技;2015年01期
6 程琳;陈代喜;黄开勇;罗启亮;莫宗恒;覃建强;;25年生杉木半同胞子代测定林分析与选择[J];广西林业科学;2014年04期
7 刘振;赵洋;杨培迪;成杨;宁静;杨阳;;SSR、SRAP、ISSR分子标记在茶树品种亲本鉴定上的比较分析[J];茶叶科学;2014年06期
8 党常顺;兰士波;宁晓光;;黑穗醋栗半同胞子代遗传效应分析及优良家系选择[J];安徽农业科学;2014年32期
9 张兴旺;李W,
本文编号:1802345
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/1802345.html