融合营销数据的配网电能损耗计算方法研究
本文选题:配电网 + 电能损耗 ; 参考:《昆明理工大学》2017年硕士论文
【摘要】:电能损耗就是配电网中的各种电能元件的电能损失,通常也简称为线损,即是从配电网的首端(通常是变电站)到关口表,或者是关口表到用户电能表的过程中所损失的电能。配电网电能损耗的高低间接的体现了一个电力企业在电力损耗规划上所做出的贡献。配电网电能损耗是各企业经济效益的核心问题,只有将损耗和线损率逐步提高才能提高供电局的企业效益。因此各企业要把降低线损作为企业的努力目标。本文主要研究了以下内容:(1)首先分析了配电网电能损耗的各种理论计算方法和线损的相关概念,同时分析国内外配电网电能损耗研究现状。基于中低压配电网营销数据的残缺,以及中低压配电网的网络拓扑结构复杂而繁琐,详细介绍了中低压配电网电能损耗的计算方法和模型。由于电力网负荷类型较多,按照负荷的不同类型对其进行了分类和建立对应的电能损耗计算方法。(2)基于云南S市某地区的配电网营销数据和台区的电能计量数据、配电网线路损耗、配电变压器损耗,如铜损和铁损等来综合分析和计算电能损耗和配电网线损率。同时提出一些关于低压电网电能损耗的计算模型来实现对云南省S市某地区配网进行了比较详细的线损理论计算和中低压线损率。根据对配电网电能损耗的理论计算和线损率的分析,分析了配电网电能损耗中的各个元件的电能损耗所占百分比。(3)最后通过建立BP神经网络模型,对配电网中导线线路上的损耗进行了基于实测数据的训练集和测试集的预测和误差分析,同时在原GRNN的广义神经网络模型的基础上,利用粒子群算法对广义神经网络模型进行了改进和优化,建立了 PSO-GRNN的复合学习算法模型,对S地区配电网电能总损耗进行了监测与分析,对S地区配电网电能损耗上的预测和降损起到了一定的理论指导作用。
[Abstract]:Power loss is the power loss of various power components in the distribution network, usually referred to as line loss, that is, from the first end of the distribution network (usually substation) to the gate meter, or from the gate meter to the user electricity meter. The power loss of distribution network indirectly reflects the contribution of a power enterprise in power loss planning. The power loss of distribution network is the core problem of the economic benefit of each enterprise. Only by increasing the loss and line loss rate step by step can the enterprise benefit of the power supply bureau be improved. Therefore each enterprise should reduce the line loss as the enterprise's goal. This paper mainly studies the following contents: (1) first of all, this paper analyzes various theoretical calculation methods of power loss and related concepts of line loss in distribution network, at the same time, it analyzes the present situation of power loss research in distribution network at home and abroad. Based on the incomplete marketing data of medium and low voltage distribution network and the complex and complicated network topology of medium and low voltage distribution network, this paper introduces the calculation method and model of power loss in medium and low voltage distribution network in detail. Because there are many load types in power network, according to the different types of load, it is classified and the corresponding calculation method of power loss is established. It is based on the distribution network marketing data in S city of Yunnan province and the electric energy measurement data in the station area. Distribution network line loss, distribution transformer loss, such as copper loss and iron loss, to analyze and calculate the power loss and distribution network line loss rate. At the same time, some calculation models about the power loss of low voltage power network are put forward to realize the theoretical calculation of line loss and the line loss rate of medium and low voltage in a distribution network in S city of Yunnan Province in detail. According to the theoretical calculation of power loss in distribution network and the analysis of line loss rate, the percentage of power loss of each component in distribution network is analyzed. Finally, the BP neural network model is established. On the basis of the training set and test set based on the measured data, the prediction and error analysis of the losses on the traverse line in the distribution network are carried out. At the same time, on the basis of the original generalized neural network model of GRNN, The generalized neural network model is improved and optimized by particle swarm optimization (PSO). The compound learning algorithm model of PSO-GRNN is established, and the total power loss of distribution network in S area is monitored and analyzed. It plays an important role in prediction and reduction of power loss in S area distribution network.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP183;TM744
【参考文献】
相关期刊论文 前10条
1 李滨;杜孟远;韦维;韦化;;基于准实时数据的智能配电网理论线损计算[J];电力自动化设备;2014年11期
2 郝思鹏;楚成彪;方泉;张仰飞;阚建飞;;基于CIM的配电网线损计算[J];电测与仪表;2014年17期
3 陆阳;周红光;兰才进;;改进配电网线损计算方法分析[J];电气技术;2013年01期
4 朱紫钊;叶发新;;一种低压配电网理论线损计算的改进算法[J];电测与仪表;2012年11期
5 杨超杰;;基于改进等值电阻法的配电网线损计算方法[J];中国高新技术企业;2012年23期
6 邓敏;刘克文;王宇飞;;基于复合学习算法的配电网理论线损计算模型[J];电力建设;2012年02期
7 彭宇文;刘克文;;基于改进核心向量机的配电网理论线损计算方法[J];中国电机工程学报;2011年34期
8 王宇飞;沈红岩;;基于改进广义回归神经网络的网络安全态势预测[J];华北电力大学学报(自然科学版);2011年03期
9 熊鹏程;;一种改进型配电网理论线损计算方法[J];中国农村水利水电;2009年09期
10 杨丽徙;刘辉;张鸿雁;娄北;;低压电网线损计算中的改进形状系数法[J];电力需求侧管理;2009年04期
相关硕士学位论文 前10条
1 张祥华;10kV配电网极限线损计算方法研究[D];华南理工大学;2014年
2 郝庆辉;基于RBF神经网络的配电网线损计算与分析[D];东北石油大学;2014年
3 徐鹏;配电网实时监视与线损计算[D];郑州大学;2014年
4 唐晓勇;配电网线损计算方法研究[D];湖南大学;2014年
5 马红岩;配电网线损计算及降损研究[D];华北电力大学;2014年
6 张力;配电网理论线损计算分析与研究[D];兰州理工大学;2013年
7 师耀辉;农村配电网理论线损计算及其管理系统的实现[D];电子科技大学;2013年
8 陈冰夏;配电网理论线损计算与降损措施研究[D];广西大学;2012年
9 张国庆;配电网线损计算[D];南京理工大学;2010年
10 周强;中低压配电网线损计算方法与降损措施的研究[D];郑州大学;2009年
,本文编号:1875582
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/1875582.html